Tagged: Artificial Intelligence Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:56 am on January 11, 2023 Permalink | Reply
    Tags: "AI to monitor changes to globally important glacier", , Artificial Intelligence, , , Crevassing is an important component of ice shelf dynamics., , , , , Un-corking the flow of ice - a process known as "unbuttressing", Using radar satellite images   

    From The University of Leeds (UK) And The University of Bristol (UK): “AI to monitor changes to globally important glacier” 

    U Leeds bloc

    From The University of Leeds (UK)

    And

    The University of Bristol (UK)

    1.9.23

    1
    Crevasses on Antarctic ice shelves change the material properties of the ice and influence their flow-speed. Research shows this coupling to be relevant but more complicated than previously thought for the Thwaites Glacier Ice Tongue. Credit: Dr Anna Hogg, University of Leeds.

    Scientists have developed AI to track the development of crevasses – or fractures – on the Thwaites Glacier ice tongue in west Antarctica.

    Crevasses are indicators of stress building-up in the glacier. 

    A team of researchers from the University of Leeds and University of Bristol have adapted an AI algorithm originally developed to identify cells in microscope images to spot crevasses forming in the ice from satellite images.

    Thwaites is a particularly important part of the Antarctic Ice Sheet because it holds enough ice to raise global sea levels by around 60 centimetres and is considered by many to be at risk of rapid retreat, threatening coastal communities around the world.

    Use of AI will allow scientists to more accurately monitor and model changes to this important glacier. 

    Published in the journal Nature Geoscience [below], the research focussed on a part of the glacier system where the ice flows into the sea and begins to float. Where this happens is known as the grounding line and it forms the start of the Thwaites Eastern ice shelf and the Thwaites Glacier ice tongue, which is also an ice shelf.

    Despite being small in comparison to the size of the entire glacier, changes to these ice shelves could have wide-ranging implications for the whole glacier system and future sea-level rise. 

    The scientists wanted to know if crevassing or fracture formation was more likely to occur with changes to the speed of the ice flow. 

    2
    Scientists have mapped the crevasses on the Thwaites Glacier Ice Tongue through time using deep learning. This new research marks a change in the way in which the structural and dynamic properties of ice shelves can be investigated. Credit: Trystan Surawy-Stepney, University of Leeds.

    Developing the algorithm

    Using machine learning, the researchers taught a computer to look at radar satellite images and identify changes over the last decade. The images were taken by the European Space Agency’s Sentinel-1 satellites, which can “see” through the top layer of snow and onto the glacier, revealing the fractured surface of the ice normally hidden from sight.

    The analysis revealed that over the last six years, the Thwaites Glacier ice tongue has sped up and slowed down twice, by around 40% each time – from four km/year to six km/year before slowing. This is a substantial increase in the magnitude and frequency of speed change compared with past records.

    The study found a complex interplay between crevasse formation and speed of the ice flow. When the ice flow quickens or slows, more crevasses are likely to form. In turn, the increase in crevasses causes the ice to change speed as the level of friction between the ice and underlying rock alters.

    Dr Anna Hogg, a glaciologist in the Satellite Ice Dynamics group at Leeds and an author on the study, said: “Dynamic changes on ice shelves are traditionally thought to occur on timescales of decades to centuries, so it was surprising to see this huge glacier speed up and slow down so quickly.”

    “The study also demonstrates the key role that fractures play in un-corking the flow of ice – a process known as “unbuttressing”.

    3
    Scientists have used radar imagery from the European Space Agency’s Sentinel-1 satellites to measure flow speed of the Thwaites Glacier Ice Tongue (shown) and analyse its structural integrity using deep learning. Credit: Benjamin J. Davison, University of Leeds.

    “Ice sheet models must be evolved to account for the fact that ice can fracture, which will allow us to measure future sea level contributions more accurately.”

    Trystan Surawy-Stepney, lead author of the paper and a doctoral researcher at Leeds, added: “The nice thing about this study is the precision with which the crevasses were mapped.

    “It has been known for a while that crevassing is an important component of ice shelf dynamics and this study demonstrates that this link can be studied on a large scale with beautiful resolution, using computer vision techniques applied to the deluge of satellite images acquired each week.” 

    Satellites orbiting the Earth provide scientists with new data over the most remote and inaccessible regions of Antarctica. The radar on board Sentinel-1 allows places like Thwaites Glacier to be imaged day or night, every week, all year round.

    Dr Mark Drinkwater of the European Space Agency commented: “Studies like this would not be possible without the large volume of high-resolution data provided by Sentinel-1. By continuing to plan future missions, we can carry on supporting work like this and broaden the scope of scientific research on vital areas of the Earth’s climate system.”

    As for Thwaites Glacier ice tongue, it remains to be seen whether such short-term changes have any impact on the long-term dynamics of the glacier, or whether they are simply isolated symptoms of an ice shelf close to its end. 

    Science paper:
    Nature Geoscience

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Bristol (UK) is one of the most popular and successful universities in the UK and was ranked within the top 50 universities in the world in the QS World University Rankings 2018.

    The U Bristol (UK) is at the cutting edge of global research. We have made innovations in areas ranging from cot death prevention to nanotechnology.

    The University has had a reputation for innovation since its founding in 1876. Our research tackles some of the world’s most pressing issues in areas as diverse as infection and immunity, human rights, climate change, and cryptography and information security.

    The University currently has 40 Fellows of the Royal Society and 15 of the British Academy – a remarkable achievement for a relatively small institution.

    We aim to bring together the best minds in individual fields, and encourage researchers from different disciplines and institutions to work together to find lasting solutions to society’s pressing problems.

    We are involved in numerous international research collaborations and integrate practical experience in our curriculum, so that students work on real-life projects in partnership with business, government and community sectors.

    U Leeds Campus

    The University of Leeds is a public research university in Leeds, West Yorkshire, England. It was established in 1874 as the Yorkshire College of Science. In 1884 it merged with the Leeds School of Medicine (established 1831) and was renamed Yorkshire College. It became part of the federal Victoria University in 1887, joining Owens College (which became The University of Manchester (UK)) and University College Liverpool (which became The University of Liverpool (UK)). In 1904 a royal charter was granted to the University of Leeds by King Edward VII.

    The university has 36,330 students, the 5th largest university in the UK (out of 169). From 2006 to present, the university has consistently been ranked within the top 5 (alongside the University of Manchester, The Manchester Metropolitan University (UK), The University of Nottingham (UK) and The University of Edinburgh (SCT)) in the United Kingdom for the number of applications received. Leeds had an income of £751.7 million in 2020/21, of which £130.1 million was from research grants and contracts. The university has financial endowments of £90.5 million (2020–21), ranking outside the top ten British universities by financial endowment.

    Notable alumni include current Leader of the Labour Party Keir Starmer, former Secretary of State Jack Straw, former co-chairman of the Conservative Party Sayeeda Warsi, Piers Sellers (NASA astronaut) and six Nobel laureates.

    The university’s history is linked to the development of Leeds as an international centre for the textile industry and clothing manufacture in the United Kingdom during the Victorian era. The university’s roots can be traced back to the formation of schools of medicine in English cities to serve the general public.

    Before 1900, only six universities had been established in England and Wales: The University of Oxford (UK) (founded c. 1096–1201), The University of Cambridge (UK) (c. 1201), The University of London (UK) (1836), The University of Durham (UK) (1837), Victoria University (UK) (1880), and The University of Wales Trinity Saint David[ Prifysgol Cymru Y Drindod Dewi Sant](WLS) (1893).

    The Victoria University was established in Manchester in 1880 as a federal university in the North of England, instead of the government elevating Owens College to a university and grant it a royal charter. Owens College was the sole college of Victoria University from 1880 to 1884; in 1887 Yorkshire College was the third to join the university.

    Leeds was given its first university in 1887 when the Yorkshire College joined the federal Victoria University on 3 November. The Victoria University had been established by royal charter in 1880; Owens College being at first the only member college. Leeds now found itself in an educational union with close social cousins from Manchester and Liverpool.

    Unlike Owens College, the Leeds campus of the Victoria University had never barred women from its courses. However, it was not until special facilities were provided at the Day Training College in 1896 that women began enrolling in significant numbers. The first female student to begin a course at the university was Lilias Annie Clark, who studied Modern Literature and Education.

    The Victoria (Leeds) University was a short-lived concept, as the multiple university locations in Manchester and Liverpool were keen to establish themselves as separate, independent universities. This was partially due to the benefits a university had for the cities of Liverpool and Manchester whilst the institutions were also unhappy with the practical difficulties posed by maintaining a federal arrangement across broad distances. The interests of the universities and respective cities in creating independent institutions was further spurred by the granting of a charter to the University of Birmingham in 1900 after lobbying from Joseph Chamberlain.

    Following a Royal Charter and Act of Parliament in 1903, the then newly formed University of Liverpool began the fragmentation of the Victoria University by being the first member to gain independence. The University of Leeds soon followed suit and had been granted a royal charter as an independent body by King Edward VII by 1904.

    The Victoria University continued after the break-up of the group, with an amended constitution and renamed as the Victoria University of Manchester (though “Victoria” was usually omitted from its name except in formal usage) until September 2004. On 1 October 2004 a merger with the University of Manchester Institute of Science and Technology was enacted to form The University of Manchester.

    In December 2004, financial pressures forced the university’s governing body (the Council) to decide to close the Bretton campus. Activities at Bretton were moved to the main university campus in the summer of 2007 (allowing all Bretton-based students to complete their studies there). There was substantial opposition to the closure by the Bretton students. The university’s other satellite site, Manygates in Wakefield, also closed, but Lifelong Learning and Healthcare programmes are continuing on a new site next to Wakefield College.

    In May 2006, the university began re-branding itself to consolidate its visual identity to promote one consistent image. A new logo was produced, based on that used during the centenary celebrations in 2004, to replace the combined use of the modified university arms and the Parkinson Building, which has been in use since 2004. The university arms will still be used in its original form for ceremonial purposes only. Four university colours were also specified as being green, red, black and beige.

    Leeds provides the local community with over 2,000 university student volunteers. With 8,700 staff employed in 2019-20, the university is the third largest employer in Leeds and contributes around £1.23bn a year to the local economy – students add a further £211m through rents and living costs.

    The university’s educational partnerships have included providing formal accreditation of degree awards to The Leeds Arts University (UK) and The Leeds Trinity University (UK), although the latter now has the power to award its own degrees. The College of the Resurrection, an Anglican theological college in Mirfield with monastic roots, has, since its inception in 1904, been affiliated to the university, and ties remain close. The university is also a founding member of The Northern Consortium (UK).

    In August 2010, the university was one of the most targeted institutions by students entering the UCAS clearing process for 2010 admission, which matches undersubscribed courses to students who did not meet their firm or insurance choices. The university was one of nine The Russell Group Association(UK) universities offering extremely limited places to “exceptional” students after the universities in Birmingham, Bristol, Cambridge, Edinburgh and Oxford declared they would not enter the process due to courses being full to capacity.

    On 12 October 2010, The Refectory of the Leeds University Union hosted a live edition of the Channel 4 News, with students, academics and economists expressing their reaction to the Browne Review, an independent review of Higher Education funding and student finance conducted by John Browne, Baron Browne of Madingley. University of Leeds Vice-Chancellor and Russell Group chairman Michael Arthur participated, giving an academic perspective alongside current vice-chancellor of The Kingston University (UK) and former Pro Vice-Chancellor and Professor of Education at the University of Leeds, Sir Peter Scott. Midway through the broadcast a small group of protesters against the potential rise of student debt entered the building before being restrained and evacuated.

    In 2016, The University of Leeds became University of the Year 2017 in The Times and The Sunday Times’ Good University Guide. The university has risen to 13th place overall, which reflects impressive results in student experience, high entry standards, services and facilities, and graduate prospects.

    In 2018, the global world ranking of the University of Leeds is No.93. There are currently 30,842 students are studying in this university. The average tuition fee is 12,000 – US$14,000.

    Research

    Many of the academic departments have specialist research facilities, for use by staff and students to support research from internationally significant collections in university libraries to state-of-the-art laboratories. These include those hosted at the Institute for Transport Studies, such as the University of Leeds Driving Simulator which is one of the most advanced worldwide in a research environment, allowing transport researchers to watch driver behaviour in accurately controlled laboratory conditions without the risks associated with a live, physical environment.

    With extensive links to the St James’s University Hospital through the Leeds School of Medicine, the university operates a range of high-tech research laboratories for biomedical and physical sciences, food and engineering – including clean rooms for bionanotechnology and plant science greenhouses. The university is connected to Leeds General Infirmary and the institute of molecular medicine based at St James’s University Hospital which aids integration of research and practice in the medical field.

    The university also operate research facilities in the aviation field, with the Airbus A320 flight simulator. The simulator was devised with an aim to promote the safety and efficiency of flight operations; where students use the simulator to develop their reactions to critical situations such as engine failure, display malfunctioning and freak weather.

    In addition to these facilities, many university departments conduct research in their respective fields. There are also various research centres, including Leeds University Centre for African Studies.

    Leeds was ranked joint 19th (along with The University of St Andrews (SCT)) amongst multi-faculty institutions in the UK for the quality (GPA) of its research and 10th for its Research Power in the 2014 Research Excellence Framework.

    Between 2014-15, Leeds was ranked as the 10th most targeted British university by graduate employers, a two place decrease from 8th position in the previous 2014 rankings.

    The 2021 The Times Higher Education World University Rankings ranked Leeds as 153rd in the world. The university ranks 84th in the world in the CWTS Leiden Ranking. Leeds is ranked 91st in the world (and 15th in the UK) in the 2021 QS World University Rankings.

    The university won the biennially awarded Queen’s Anniversary Prize in 2009 for services to engineering and technology. The honour being awarded to the university’s Institute for Transport Studies (ITS) which for over forty years has been a world leader in transport teaching and research.

    The university is a founding member of The Russell Group Association(UK), comprising the leading research-intensive universities in the UK, as well as the N8 Group for research collaboration, The Worldwide Universities Network (UK), The Association of Commonwealth Universities (UK), The European University Association (EU), The White Rose University Consortium (UK), the Santander Network and the CDIO Initiative. It is also affiliated to The Universities (UK). The Leeds University Business School holds the ‘Triple Crown’ of accreditations from the Association to Advance Collegiate Schools of Business, the Association of MBAs and the European Quality Improvement System.

     
  • richardmitnick 8:50 am on December 17, 2022 Permalink | Reply
    Tags: "Energy Strategy 2050", "UrbanTwin - seeing double for sustainability", Artificial Intelligence, , , , Environmental sustainability, , , Urban areas are responsible for 75% of greenhouse gas emissions while rising temperatures significantly impact their liveability.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): ” ‘UrbanTwin’ – seeing double for sustainability” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    12.16.22
    John Maxwell
    Tanya Petersen

    1
    Credit: EPFL.

    A consortium of Swiss research institutes from the ETH Domain, led by EPFL, has begun working on “UrbanTwin” to make an artificial intelligence-driven and ecologically sensitive model of the energy, water, and waste systems of the town of Aigle. The aim: to help boost sustainability.

    Now, “UrbanTwin”, a collaboration of Swiss research institutions within the ETH Domain, led by EPFL through laboratories of four different schools (STI, ENAC, IC, and SB) and four centers [1], plans to make identical twins of another kind, using neural networks instead of DNA to create a double of a Swiss town. Aigle has been chosen due to its size and because it has an extensive range of water sources and includes very detailed energy monitoring infrastructure previously developed by the Energy Center of EPFL. Lausanne is also a potential partner.

    One of ten nationally funded Joint Initiatives of the ETH Board addressing the strategic areas of energy, climate, and environmental sustainability, “UrbanTwin” aims to develop and validate a holistic tool to support decision-makers in achieving environmental goals, such as the “Energy Strategy 2050” and the vision of climate-adaptive “sponge cities”. The tool will be based on a detailed model of critical urban infrastructure, such as energy, water, buildings, and mobility, accurately simulating the evolution of these interlinked infrastructures under various climate scenarios and assessing the effectiveness of climate-change-related actions.

    “Urban areas are responsible for 75% of greenhouse gas emissions while rising temperatures significantly impact their liveability. They represent a natural integrator of several systems, including energy, water, buildings, and transport. So, they represent the ideal setting for implementing a coordinated, multi-sectoral response to climate changes leveraging digitalization as a systemic approach.” explains David Atienza, Scientific Director of the EPFL’s EcoCloud Center for sustainable cloud computing and Head of EPFL’s Embedded Systems Laboratory (ESL). David Atienza and François Marechal are the coordinators of UrbanTwin.

    “In ‘UrbanTwin’, we want to collect information from multiple sources by using new edge artificial intelligence (AI) platforms and integrate them using cloud computing technologies on a detailed model of critical urban infrastructures, such as energy, water (both clean and waste), buildings, and mobility and their inter-dependencies”, continues Atienza.

    “As a cutting-edge example of what digitalization and AI can offer, this tool will be able to consider underlying socio-economic and environmental factors, while assessing the effectiveness of climate-change-related actions beforehand.”, adds Atienza. “The goal is to develop a technology that is open and can be applied to other urban areas in any region of Switzerland”.

    Also, it was key to have a flexible and realistic urban environment, such as Aigle, to use as case study. “By making reference to the Aigle demonstrator, we will develop an advanced modelling and control framework for the day-ahead and intraday control of urban/rural multi-energy systems. The framework will be capable of integrating the physical constraints of the electrical, mobility, heating/cooling, and water systems, along with the representation of the stochastic nature of the available resources. Based on this framework, a planning tool for integrated energy systems that considers their daily operation will be developed. The aim is to produce planning decisions inherently satisfying daily and intra-day operational needs.”, explains Mario Paolone, Head of EPFL’s Distributed Electrical Systems Laboratory (DESL).

    Technology transfer is a constantly recurring theme, another is inter-institutional collaboration. Five different institutions are taking part: EPFL, ETHZ (The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH)), WSL (Swiss Federal Institute for Forest, Snow and Landscape Research), EMPA (Swiss Federal Laboratories for Materials Science and Technology), and EAWAG (Swiss Federal Institute of Aquatic Science and Technology).

    Inter-institutional research cooperation is essential in “UrbanTwin” by having researchers co-directed between multiple laboratories at different institutions. As an example, the water monitoring system will include selecting the best source of freshwater supplies and measuring its quality, as well as modelling the disposal of wastewater. It will include AI technologies that will do detective work as well, with a system that will track sources of pollution as quickly as possible and send alarms with the origin located and reported. To this end, Giulio Masinelli, who is a doctoral student jointly co-supervised by EMPA and EPFL, will work on developing new smart multi-parametric sensing systems to create the digital twin. He has a good appreciation of this project as he is working on a similar approach for advanced manufacturing. “We can generate data by installing sensors on sinks,” explains Masinelli,” measuring water quality around the city, the pH level, the salt concentration and other metrics. We will use machine learning to collect observations, and then make predictions – with physical constraints. These constraints are what make a simulation powerful because it becomes a flexible model with lots of parameters.”

    “Masses of work goes into applying partial differential equations to the data so that the system can be generalized without a drop in quality coming from physical constraints and unfamiliar data. The result is a neural network that can generate results in a couple of milliseconds: the resolution of the partial differential equations. Then you can fine-tune the parameters so that they will work with all data. You must not stay too close to one dataset if you want good predictions,” he continued.

    “UrbanTwin” represents a welcome opportunity for these researchers to collaborate with a range of different teams at a difficult time for Swiss scientists. Participation in Horizon Europe (EU) was lost to Swiss researchers since the country broke off negotiations with the EU in 2021, making national funding the only current option. Atienza is hopeful that “UrbanTwin” can repay the investment of the Swiss government, “if we can improve the way city administrators deal with their resources and raise levels of efficiency it would be a really big step.”

    Currently, AI and cloud computing are used in an ever-increasing number of ways in research, as exemplified by the EcoCloud center of EPFL. Atienza and Marechal are convinced that “Sustainable digital twin technologies will be implemented through “UrbanTwin”, which will provide a great tool to complement decision-makers in their work, searching through vast stores of data to find anomalies, or recommendations, that would take a person too long to find. UrbanTwin will be an AI system, and a holistic one: we expect unexpected results.”

    Unexpected results should not come as a big surprise here – it’s a twin thing.

    [1] Professional science outreach, communication, and scientific project management are assured through four EPFL centers, namely, the Center for Sustainable Cloud Computing (EcoCloud), the Energy Center, the Center for Climate Impact and Action (CLIMACT), and the Center for Intelligent Systems (CIS).

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 5:27 pm on December 14, 2022 Permalink | Reply
    Tags: "Multicollege department to bridge design and technology", , , , Architecture and Design, Artificial Intelligence, , College of Human Ecology (CHE), Cornell Ann S. Bowers College of Computing and Information Science, Cornell Engineering, Cornell SC Johnson College of Business, , , Department of Design Technology, , Jacobs Technion-Cornell Institute at Cornell Tech in New York City, Macnine Learning, , Physical Sciences and Engineering, , The College of Architecture, The Radical Collaboration initiative will facilitate hiring by the partner colleges of core faculty members.   

    From “The Chronicle” At Cornell University: “Multicollege department to bridge design and technology” 

    From “The Chronicle”

    At

    Cornell University

    12.14.22
    James Dean | Cornell Chronicle
    jad534@cornell.edu

    Media Contact
    Rebecca Valli
    rv234@cornell.edu
    607-255-6035

    1
    During the Cornell Tech Open Studio Fall 2022 event on Dec. 6, master’s students Thanut Sakdanaraseth, Kseniya Yerakhavets and Thomas Wallace discuss their interdisciplinary project, Automata Mangrove, with Jenny Sabin, associate professor in architecture and chair of the new multicollege Department of Design Tech. Credit: Jesse Winter/Provided.

    Recognizing design’s integral role in the development of technologies reshaping the built environment and how we live and work, Cornell has established the multicollege and transdisciplinary Department of Design Tech.

    The new department seeks to bridge and enhance design and technology disciplines and departments across the university, complementing and building upon strengths in the design arts, design science, design engineering and design professions.

    The College of Architecture, Art and Planning (AAP) will administer the Department of Design Tech in partnership with the College of Human Ecology (CHE), Cornell Ann S. Bowers College of Computing and Information Science, Cornell Engineering and Cornell Tech in New York City.

    The department is the product of more than two years of discussions by the deans of those colleges and a faculty task force that also includes representatives from the College of Arts and Sciences and Cornell SC Johnson College of Business. They were charged by Provost Michael I. Kotlikoff’s Radical Collaboration initiative – which identified Design + Technology as one of 10 strategic areas – to assess how best to strengthen and expand design education and research in emerging technologies at Cornell.

    “The relationship between design and technology has never been more important to society,” Kotlikoff said. “The Department of Design Tech will foster collaborations across disciplines and campuses that promise to advance design education and research at Cornell and beyond.”

    J. Meejin Yoon, B.Arch. ’95, the Gale and Ira Drukier Dean of AAP and lead dean for Design Tech, said the collaborating colleges recognized that each could benefit from, and contribute to, an integrated vision for design and technology that moved beyond disciplinary barriers.

    Partnering with Yoon are Rachel Dunifon, the Rebecca Q. and James C. Morgan Dean of CHE; Kavita Bala, inaugural dean of Cornell Bowers CIS; Lynden Archer, the Joseph Silbert Dean of Engineering; and Greg Morrisett, the Jack and Rilla Neafsey Dean and Vice Provost of Cornell Tech.

    “Synergy advancements in design and technology is not only imperative to design education at Cornell, but critical for preparing the next generation of designers, engineers, scientists, technologists and creatives to take on some of the most complex challenges of our time,” Yoon said. “Design Tech will pose, develop and answer questions with applied design and technology that can define new models for transdisciplinary design and thought.”

    Design Tech’s inaugural chair is Jenny Sabin, the Arthur L. and Isabel B. Wiesenberger Professor in Architecture. Sabin co-chaired the 12-member Design + Technology faculty task force with Wendy Ju, associate professor at the Jacobs Technion-Cornell Institute at Cornell Tech.

    From additive manufacturing to artificial intelligence, Sabin said, we are seeing a contemporary paradigm shift and fusion across scales of the digital, physical and biological. In that context, she said, design and technology increasingly rely on each other to innovate.

    Examples of Cornell research at the intersection of design and technology, Sabin said, include designing for human behavior in the context of autonomous vehicles; origami-inspired robots; additive manufacturing in space; 3D printing of programmable and sometimes living architectural materials; and the development of wearable interfaces responsive to changes in biodata.

    “Design Tech will not only bridge our fields and faculty, but fill gaps in emerging, high-demand areas such as product design, interaction design, materials design and digital media design,” Sabin said. “At Cornell, we are uniquely positioned to be pioneers in this burgeoning space given our expertise in design, robotics, nanotech and materials science, computer science and beyond.”

    The department’s first degree offering, pending approval from New York state, will be an interdisciplinary master’s in design technology anticipated for the 2024-25 academic year. Straddling the Ithaca campus and Cornell Tech, the two-year program will build upon AAP’s existing master’s in Matter Design Computation and incorporate lessons learned from “Design and Making Across Disciplines,” a four-year collaboration with Cornell Tech piloting transdisciplinary, studio-based teaching models that intersect with design tech research. Additional degrees and undergraduate courses may be proposed.

    During a planning year ahead, a faculty steering committee drawn from the Design + Technology task force will work to launch the department and formalize the new master’s program.

    The Radical Collaboration initiative will facilitate hiring by the partner colleges of core faculty members in design, science and engineering who will co-teach courses and engage in collaborative research.

    In addition to Sabin and Ju, Design Tech’s inaugural faculty will include Heeju Park, associate professor in the Department of Human Centered Design (CHE); Timur Dogan, associate professor of architecture (AAP); François Guimbretière, professor of information science (Cornell Bowers CIS); and Uli Wiesner, the Spencer T. Olin Professor of Engineering in the Department of Materials Science and Engineering (Cornell Engineering).

    “It’s extremely exciting to realize this new model that is truly transdisciplinary and collaborative with support from the university’s leadership and five colleges that are all aligned,” Sabin said. “We’re grateful to be a part of it.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 8:59 am on December 13, 2022 Permalink | Reply
    Tags: "Building Trust with the Algorithms in Our Lives", , Artificial Intelligence, , ,   

    From Yale University: “Building Trust with the Algorithms in Our Lives” 

    From Yale University

    1
    Credit: Sean David Williams.

    12.6.22
    Taly Reich

    Algorithms are omnipresent in our increasingly digital lives. They offer us new music and friends. They recommend books and clothing. They deliver information about the world. They help us find romantic partners one day, efficient commutes the next, cancer diagnoses the third.

    And yet most people display an aversion to algorithms. They don’t fully trust the recommendations made by computer programs. When asked, they prefer human predictions to those put forward by algorithms.

    “But given the growing prevalence of algorithms, it seems important we learn to trust and appreciate them,” says Taly Reich, associate professor at Yale SOM. “Is there an intervention that would help reduce this aversion?”

    New research conducted by Reich and two colleagues, Alex Kaju of HEC Montreal and Sam Maglio of the University of Toronto [Journal of Consumer Psychology (below)], finds that clearly demonstrating an algorithm’s ability to learn from past mistakes increases the trust that people place in the algorithm. It also inclines people to prefer the predictions made by algorithms over those made by humans.

    In arriving at this result, Reich drew on her foundational work on the value of mistakes [Organizational Behavior and Human Decision Processes (below)]. In a series of prior papers, Reich has established how mistakes, in the right context, can create benefits; people who make mistakes can come across as more knowledgeable and credible than people who don’t. Applying this insight to predictive models, Reich and her colleagues investigated whether framing algorithms as capable of learning from their mistakes enhanced trust in the recommendations that algorithms make.

    In one of several experiments, for instance, participants were asked whether a trained psychologist or an algorithm would be better at evaluating somebody’s personality. Under one condition, no further information was provided. In another condition, identical performance data for both the psychologist and the algorithm explicitly demonstrated improvement over time. In the first three months, each one was correct 60% of the time, incorrect 40% of the time; by six months, they were correct 70% of the time; and over the course of the first year the rate moved up to 80% correct.

    Absent information about the capacity to learn, participants chose a psychologist over an algorithm 75% of the time. But when shown how the algorithm improved over time, they chose it 66% of the time—more often than the human. Participants overcame any potential algorithm aversion and instead expressed what Reich and her colleagues term “algorithm appreciation,” or even “algorithm investment,” by choosing it at a higher rate than the human. These results held across several different cases, from selecting the best artwork to finding a well-matched romantic partner. In every instance, when the algorithm exhibited learning over time, it was trusted more often than its human counterpart.

    Of course, Reich recognizes that companies often can’t or don’t want to disclose specific details about the accuracy of their algorithms. Most likely, they won’t break outcomes down to percentages and share these with consumers. “Importantly, though, this was a hybrid paper, where we cared about the practical implications as much as the theory,” she says. “Given constraints in the real world, we wanted to know whether there were more subtle methods for dispelling this notion that AI can’t learn.”

    The researchers explored whether small changes to how predictive software is described has an impact on choice. In one study, participants were asked whether they wanted to rely on themselves to judge the quality of a piece of art, or whether they wanted to rely on technology to do it for them. The technology was described as either an “algorithm” or a “machine-learning algorithm.” When given the choice of “algorithm,” the majority of people chose themselves. When offered instead a “machine-learning algorithm,” the majority of people chose technology. Simply providing a name suggestive of an algorithm’s ability to learn proved sufficient to overcome lack of trust.

    For Reich, this presents a clear and practical takeaway for companies that rely, in one way or another, on predictive algorithms. Companies need to be aware that consumers, for the most part, harbor distrust of the recommendations made by algorithms. But this distrust, to a point, is readily overcome: a simple semantic nod toward an algorithm’s ability to learn will build greater trust with the consumers it serves.

    “If we understand that machines, like humans, can learn from their mistakes,” Reich says, “we won’t resist them as much.”

    Science papers:
    Organizational Behavior and Human Decision Processes 2018
    Journal of Consumer Psychology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton.

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 1:04 pm on December 9, 2022 Permalink | Reply
    Tags: "Deep reinforcement learning", "The smallest robotic arm you can imagine is controlled by artificial intelligence", , , Artificial Intelligence, , , Researchers used deep reinforcement learning to steer atoms into a lattice shape with a view to building new materials or nanodevices.,   

    From Aalto University [Aalto-yliopisto] (FI): “The smallest robotic arm you can imagine is controlled by artificial intelligence” 

    From Aalto University [Aalto-yliopisto] (FI)

    12.7.22

    Adam Foster
    Professori
    adam.foster@aalto.fi

    Peter Liljeroth
    Akatemiaprofessori
    peter.liljeroth@aalto.fi
    +358503636115

    1
    Researchers used deep reinforcement learning to steer atoms into a lattice shape with a view to building new materials or nanodevices.

    In a very cold vacuum chamber, single atoms of silver form a star-like lattice. The precise formation is not accidental, and it wasn’t constructed directly by human hands either. Researchers used a kind of artificial intelligence called “deep reinforcement learning” to steer the atoms, each a fraction of a nanometer in size, into the lattice shape. The process is similar to moving marbles around a Chinese checkers board, but with very tiny tweezers grabbing and dragging each atom into place.

    The main application for “deep reinforcement learning” is in robotics, says postdoctoral researcher I-Ju Chen. “We’re also building robotic arms with deep learning, but for moving atoms,” she explains. “Reinforcement learning is successful in things like playing chess or video games, but we’ve applied it to solve technical problems at the nanoscale.” 

    So why are scientists interested in precisely moving atoms? Making very small devices based on single atoms is important for nanodevices like transistors or memory. Testing how and whether these devices work at their absolute limits is one application for this kind of atomic manipulation, says Chen. Building new materials atom-by-atom, rather than through traditional chemical techniques, may also reveal interesting properties related to superconductivity or quantum states.

    The silver star lattice made by Chen and colleagues at the Finnish Center for Artificial Intelligence [FCAI] and Aalto University is a demonstration of what ‘deep reinforcement learning” can achieve. “The precise movement of atoms is hard even for human experts,” says Chen. “We adapted existing “deep reinforcement learning’ for this purpose. It took the algorithm on the order of one day to learn and then about one hour to build the lattice.” The reinforcement part of this type of deep learning refers to how the AI is guided—through rewards for correct actions or outputs. “Give it a goal and it will do it. It can solve problems that humans don’t know how to solve.”

    Applying this approach to the world of nanoscience materials is new. Nanotechniques can become more powerful with the injection of machine learning, says Chen, because it can accelerate the parameter selection and trial-and-error usually done by a person. “We showed that this task can be completed perfectly through reinforcement learning,” concludes Chen. The group’s research, led by professors Adam Foster and Peter Liljeroth, was recently published in Nature Communications [below].

    Science paper:
    Nature Communications
    See the science paper for instructive material with images.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Aalto University [Aalto-yliopisto] (FI) is a university located in Espoo, Finland. It was established in 2010 as a merger of three major Finnish universities: the Helsinki University of Technology (established 1849), the Helsinki School of Economics (established 1904), and the University of Art and Design Helsinki (established 1871). The close collaboration between the scientific, business and arts communities is intended to foster multi-disciplinary education and research. The Finnish government, in 2010, set out to create a university that fosters innovation, merging the three institutions into one.

    The university is composed of six schools with close to 17,500 students and 4,000 staff members, making it Finland’s second largest university. The main campus of Aalto University is located in Otaniemi, Espoo. Aalto University Executive Education operates in the district of Töölö, Helsinki. In addition to the Greater Helsinki area, the university also operates its Bachelor’s Programme in International Business in Mikkeli and the Metsähovi Radio Observatory Metsähovi Radio Observatory [Metsähovin radiotutkimusasema] Aalto University [Aalto-yliopisto](FI) in Kirkkonummi. in Kirkkonummi.

    Aalto University’s operations showcase Finland’s experiment in higher education. The Aalto Design Factory, Aalto Ventures Program and Aalto Entrepreneurship Society (Aaltoes), among others, drive the university’s mission for a radical shift towards multidisciplinary learning and have contributed substantially to the emergence of Helsinki as a hotbed for startups. Aaltoes is Europe’s largest and most active student run entrepreneurship community that has founded major concepts such as the Startup Sauna accelerator program and the Slush startup event.

    The university is named in honour of Alvar Aalto, a prominent Finnish architect, designer and alumnus of the former Helsinki University of Technology, who was also instrumental in designing a large part of the university’s main campus in Otaniemi.

     
  • richardmitnick 8:48 pm on December 6, 2022 Permalink | Reply
    Tags: "'No small feat'- using AI to explore the vastness of 'chemical space'", "Chemical space" is infinite and searching it is no small feat., "How big is chemical space?", A second way to expand AI for discovery is to include more students., Advanced computing, AI can be thought of as the fourth pillar of science., AI is a tool that humans can use to accelerate and improve their own research., AI is not a silver bullet. There is a cost associated with it that can be measured in data acquisition., , Artificial Intelligence, “Chemical Space” and the untapped potential of undiscovered chemical combinations., , , , Conventional chemistry is slow-a series of often tedious trial and error that limits our ability to explore beyond a small subset of possibilities., Data acquisition is costly both financially and in terms of its carbon footprint., First - Open-source research, Many of the most widely used materials no longer serve us., , Most of the world’s plastic waste generated to date has not yet been recycled., The groundbreaking nature of AI is that it can be applied to any sector., , This is but one step in self-driving laboratories., U of T's Anatole von Lilienfeld, We are at the dawn of truly digitizing the chemical sciences., Without computer simulation the amount of computation needed to support scientific research would take far longer than a lifetime.   

    From The University of Toronto (CA): “‘No small feat’- using AI to explore the vastness of ‘chemical space'” U of T’s Anatole von Lilienfeld 

    From The University of Toronto (CA)

    12.5.22
    Erin Warner

    1
    Anatole von Lilienfeld is one of the world’s brightest visionaries on the use of computers to understand the vastness of chemical space. (photo by Diana Tyszko)

    The University of Toronto’s Anatole von Lilienfeld navigates space – but rather than exploring the depths of the universe, his artificial intelligence-powered work focuses on “chemical space” and the untapped potential of undiscovered chemical combinations.

    The inaugural Clark Chair in Advanced Materials at U of T and the Vector Institute for Artificial Intelligence – and a pivotal member of U of T’s Acceleration Consortium – von Lilienfeld is one of the world’s foremost visionaries for the use of computers to understand the vastness of chemical space.

    Von Lilienfeld, a professor jointly appointed to U of T’s department of chemistry in the Faculty of Arts & Science and the department of materials science and engineering in the Faculty of Applied Science & Engineering, was a speaker at the Acceleration Consortium’s first annual Accelerate conference earlier this year. The four-day program explored the power of self-driving labs, an emerging technology that combines AI, automation and advanced computing to accelerate materials and molecular discovery.

    Writer Erin Warner recently spoke with von Lilienfeld about the digitization of chemistry and what the future holds.
    _______________________________________________________________
    How big is chemical space?

    We are surrounded by materials and molecules. Consider the chemical compounds that make up our clothing, the pavement we walk on, and the batteries in our electric cars. Now think about the new possible combinations that are out there waiting to be discovered, such as catalysts for effective atmospheric CO2 capture and utilization, low-carbon cement, lightweight biodegradable composites, membranes for water filtration, and potent molecules for treatment of cancer and bacterial-resistant disease.

    In a practical sense, “chemical space” is infinite and searching it is no small feat. A lower estimate says it contains 1060 compounds – more than the number of atoms in our solar system.

    Why do we need to accelerate the search for new materials?

    Many of the most widely used materials no longer serve us. Most of the world’s plastic waste generated to date has not yet been recycled. But the materials that will power the future will hopefully be sustainable, circular, and inexpensive.

    Conventional chemistry is slow-a series of often tedious trial and error that limits our ability to explore beyond a small subset of possibilities. However, AI can accelerate the process by predicting which combinations might result in a material with the set of desired characteristics we are looking for (e.g., conductive, biodegradable, etc.).

    This is but one step in self-driving laboratories, an emerging technology that combines AI, automation, and advanced computing to reduce the time and cost of discovering and developing materials by up to 90 per cent.

    How can human chemists and AI work together effectively? 

    AI is a tool that humans can use to accelerate and improve their own research. It can be thought of as the fourth pillar of science. The pillars, which build on each other, include experimentation, theory, computer simulation and AI.

    Experimentation is the foundation. We experiment with the aim of improving the physical world for humans. Then comes theory to give your experiments shape and direction. But theory has its limitations. Without computer simulation the amount of computation needed to support scientific research would take far longer than a lifetime. But even computers have constraints.

    With difficult equations come the need for high-performance computing, which can be quite costly. This is where AI comes in. AI is a less costly alternative. It can help scientists predict both an experimental and computational outcome. And the more theory we build into the AI model, the better the prediction. AI can also be used to power a robotic lab, allowing the lab the ability to run 24/7. Human chemists will not be replaced; instead, they can hand off tedious hours of trial and error to focus more on designing the objectives and other higher-level analysis.

    Are there any limitations to AI, like the ones you described in the other pillars of science?

    Yes, it is important to note that AI is not a silver bullet, and that there is a cost associated with it that can be measured in data acquisition. You cannot use AI without data. And data acquisition requires experimenting and recording the outcome in a way that can be processed by computers. Like a human, the AI then learns by reviewing the data and making an extrapolation or prediction.

    Data acquisition is costly both financially and in terms of its carbon footprint. To address this, the goal is to improve the AI. If you can encode our understanding of physics into the AI, it becomes more efficient and requires less data to learn but provides the same predictive qualities. If less data is needed for training, then the AI model becomes smaller.

    Rather than just using AI as a tool, the chemist can also interrogate it to see how well its data captures theory, perhaps leading to the discovery of a new relative law for chemistry. While this interactive relationship is not as common, it may be on the horizon and could improve our theoretical understanding of the world

    How can we make AI for discovery more accessible?

    The first way is open-source research. In the emerging field of accelerated science, there are many proponents of open-source access. Not only are journals providing access to research papers, but also in many cases to the data, which is a major component for making the field more accessible.

    There are also repositories for models and code, like GitHub. Data sets can record and encode a lot of value.Providing more open access to data, which can be too costly for some to generate on their own, could lead to scientific advancements that ultimately benefit all of humanity. Scientists can then use the data from other scientists to ask their own research questions and make their own AI models.

    A second way to expand AI for discovery is to include more students. We need to teach basic computer science and coding skills as part of a chemistry or materials science education. Schools around the world are beginning to update their curricula to this effect, but we still need to see more incorporate this essential training. The future of the sciences is digital.

    How do initiatives like Acceleration Consortium, and a conference like Accelerate, help advance the field?

    We are at the dawn of truly digitizing the chemical sciences. Coordinated, joint efforts, such as the Acceleration Consortium, will play a crucial role in synchronizing efforts not only at the technical but also at the societal level, thereby enabling the worldwide implementation of an ‘updated’ version of chemical engineering with unprecedented advantages for humanity at large. The consortium also serves to connect academia and industry, two worlds that could benefit from a closer relationship. Visionaries in the commercial sector can dream up opportunities, and the consortium will be there to help make the science work. The groundbreaking nature of AI is that it can be applied to any sector. AI is on a trajectory to have an even greater impact than the advent of computers.

    Accelerate, the consortium’s first annual conference, was a great rallying event for the community and was a reminder that remarkable things can come from a gathering of bright minds. While Zoom has done a lot for us during the pandemic, it cannot easily replicate the excitement and enthusiasm often cultivated at an in-person conference and which are needed to direct research and encourage a group to pursue a complex goal.

    What area of chemical space fascinates you the most?

    Catalysts, which enable a certain chemical reaction to occur but remain unchanged in the process. A century ago, Haber and Bosch developed a catalytic process that would allow the transformation of nitrogen—the dominant substance in the air we breathe—into ammonia. Ammonia is a crucial starting material for chemical industries, but also for fertilizers. It made the mass production of fertilizers possible and saved millions of people from starvation. Major fractions of humanity would not exist right now if it were not for this catalyst.

    From a physics point of view, what defines and controls catalyst activity and components are fascinating questions. They might also be critical for helping us address some of our most pressing challenges. If we were to find a catalyst that could use sunlight to turn nitrogen rapidly and efficiently into ammonia, we might be able to solve our energy problem by using ammonia for fuel. You can think of the reactions that catalysts enable as ways of traveling through chemical space and to connect different states of matter.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.

    Research

    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

     
  • richardmitnick 9:26 am on November 28, 2022 Permalink | Reply
    Tags: "Carbon Mapper" project, "DREAMS": Distributed Robotic Exploration and Mapping Systems Lab, "Global Airborne Observatory", "This imaginative tech is transforming conservation", Airborne observatory for research, , Artificial Intelligence, “ ’Hyperspectral’ imaging”: going beyond visible wavelengths of light to capture those across the entire electromagnetic spectrum., “3D imaging”: using proprietary laser technology to see beneath the tops of trees or the water’s surface all the way to the forest or ocean floor and all the structures and life-forms in between, “Allen Coral Atlas”: using newer technology to improve coral maps., “Ultra-high-resolution imaging”: If the chemical scans reveal a methane leak in an agricultural area for example the high-res camera can zoom in to see exactly which cattle paddock it’s coming f, , , Center for Global Discovery and Conservation Science, , , Conservation is a call to protect and restore life on our planet and the need is urgent., Environmental research, , Spectranomics research project,   

    From The Arizona State University: “This imaginative tech is transforming conservation” 

    From The Arizona State University

    11.14.22 [Just today in social media.]

    1
    Alumnus Rodney Staggers Jr. and grad student Aravind Adhith Pandian Saravanakumaran stand on a boat in Bermuda and launch their small robotic boat, which ferries several other pieces of equipment.

    Conservation is a call to protect and restore life on our planet, and the need is urgent. But the scientists who guide this work are limited by the amount of ground they can cover. At Arizona State University’s Center for Global Discovery and Conservation Science, researchers are expanding their reach — and their senses — with labs that fly, drones that swim, cameras that orbit and other imaginative technology to study ecosystems around the world.

    The center, a unit of the Julie Ann Wrigley Global Futures Laboratory, leads environmental research that helps communities adapt to and address the effects of global environmental change.

    “To do something at a scale beyond your visual, temporal or programmatic reach requires technology,” says Greg Asner, who directs the center. “It’s not the answer to conservation, but you won’t get the conservation done without it.”

    2
    Step inside the Global Airborne Observatory plane and you’ll see a carbon fiber interior with computer screens on one wall behind the pilot and co-pilot chairs, a supercomputer hard drive the size of a small filing cabinet, and in the back a giant copper cylinder on a rolling, pneumatic mount that holds all the sensor heads. Photo courtesy of Greg Asner.

    It’s a bird, it’s a plane, it’s … no, wait, it is a plane

    The Global Airborne Observatory is a Dornier 228 airplane. Formerly a 21-seater, it has been gutted and crammed with an array of scanners and supercomputers, making it a high-tech hub for environmental science.

    As the plane scans regions of the Earth below, it gathers a slew of measurements and uses artificial intelligence to get a picture of an ecosystem’s health.

    Asner and his team help nations identify areas with the greatest variety of life, called biodiversity, to decide where to center conservation efforts.

    “We discovered those with the airborne observatory, and then many of those became new protected areas — new national parks, for example,” says Asner, who is also a professor in the School of Ocean Futures.

    Since joining ASU in 2019, he has focused much of his effort on mapping the world’s coral reefs for the Allan Coral Atlas. The project measures not just where reefs are, but also their health and the surrounding environmental conditions. This data gives governments and conservation groups guidance on where to set aside protected marine areas and where to focus resources.

    2
    The Global Airborne Observatory takes three main types of measurements: 3D images for mapping, “hyperspectral” images for chemical signatures, and ultra-high-resolution images for detailed visuals. Illustration by Shireen Dooling.

    The plane takes three main types of measurements. The first, 3D imaging, uses proprietary laser technology to see beneath the tops of trees or the water’s surface all the way to the forest or ocean floor, and all the structures and life-forms in between.

    It also takes “hyperspectral” images, which go beyond visible wavelengths of light to capture those across the entire electromagnetic spectrum. From these images, the team can tell what chemicals are present, which they use to measure oil spills or chemical leaks.

    The third type of data is ultra-high-resolution images. If the chemical scans reveal a methane leak in an agricultural area, for example, the high-res camera can zoom in to see exactly which cattle paddock it’s coming from.

    Saddle up, satellites

    In addition to flying for the Allen Coral Atlas project, Asner is using the plane to prepare for an upcoming project called Carbon Mapper in partnership with Planet, an organization that provides daily satellite data. The project will allow researchers to see the day-by-day changes happening in ecosystems all over Earth.

    Carbon Mapper’s two satellites, which are expected to launch in August 2023, have some of the same technology on board as the plane. Before the launch, the plane is flying over the U.S. to gather sample data. This data will supplement future satellite data as well as train Carbon Mapper’s machine-learning software to better analyze what it finds.

    Once the satellites are in operation, Carbon Mapper will observe methane and carbon dioxide emissions, land use and agricultural pollution, and coastal water quality. It will also begin a new stage for the Allen Coral Atlas team, who will use the newer technology to improve their coral maps.

    3
    The Hawaiian ohia tree is vulnerable to disease, but the Spectranomics research project may help conservationists track the spread of disease and find resistant tree populations. Photo courtesy of Robin Martin.

    Sensing some chemistry here

    Robin Martin is the brains behind the Global Airborne Observatory’s ability to detect the chemicals in an environment based on spectral imaging. Through her research project, Spectranomics, she found an amazing second use for this information. She can tell plant and coral species apart based on their unique chemical signatures. This lets her see which species are living in a certain area.

    Megan Seely, an ASU geography graduate student, is using Spectranomics to tell apart different varieties of ohia, a tree that grows in Hawaii. She hopes to map the spread of a disease called rapid ohia death to find out if some types of ohia are more resistant than others.

    “Spectranomics was developed to expand our knowledge of how remote sensing properties, particularly spectra, measure the underlying chemistry that has evolved through time,” says Martin, an associate professor in the School of Geographical Sciences and Urban Planning and a core faculty member of the center.

    Martin had to do a lot of groundwork before the observatory plane was able to do its remote sensing from the sky. To develop this method, she sampled tropical trees, ground up their leaves in the lab, measured 23 chemical traits from each sample, and then used statistical analysis to match those traits to spectral signatures that the plane can recognize. Her lab has archived over 10,000 tree species.

    “One of the advantages of being able to use remote sensing is that you can take measurements in places that you can’t physically get to, and you can also look at patterns over much larger areas, which then reveal more about the landscape than if you’re walking around measuring plots, for example,” she says.

    In the future, she will be able to tap into Carbon Mapper’s sensing power to take measurements more frequently than she can with the plane.

    3
    Engineering graduate student Aravind Adhith Pandian Saravanakumaran checks drone equipment on an ocean field trip during the Bermuda Institute of Oceanic Sciences’ Mid-Atlantic Robotics IN Education (MARINE) program. Photo courtesy of Jnaneshwar Das.

    Seaworthy robot crew

    Jnaneshwar Das, director of the Distributed Robotic Exploration and Mapping Systems (DREAMS) Lab, builds teams of autonomous bots and drones that gather environmental data. As a core faculty member in the Center for Global Discovery and Conservation Science, he is developing underwater drones and other robots to analyze the ocean floor in collaboration with Asner and Martin.

    Typically, they need divers to take mapping equipment underwater to calibrate the plane’s measurements. Using drones that learn from scientists and collaborate with them means more reef coverage and less required diving time.

    “Technology can make us more efficient and can kind of expand our senses. It helps us to do dull and dangerous things,” says Das, who is also an assistant research professor in the School of Earth and Space Exploration. “There’s a symbiosis that’s happening.”

    Since the project’s beginnings as a sketch of an underwater drone on a napkin, it has grown into a veritable crew of seafaring bots, including the underwater drone, small flying drones, trebuchet-launched cameras and a robotic boat that ferries all of them over the water.

    Last summer, DREAMS Lab collaborated with the Bermuda Institute of Oceanic Sciences (BIOS) to create an educational course for Bermudian youths through the Mid-Atlantic Robotics IN Education (MARINE) program. BIOS announced a partnership with ASU last year and is now part of the Global Futures Laboratory.

    Two ASU students from the lab spent part of their summer in Bermuda testing the DREAMS Lab equipment in the ocean and using it to introduce marine technology to students from the MARINE program.

    Rodney Staggers Jr., now an engineering alumnus, and Aravind Adhith Pandian Saravanakumaran, an engineering graduate student, worked together on building and testing the drones in Arizona so they could withstand the ocean’s extreme conditions. Saravanakumaran focused on the “brains” of the drones, the automation software that guides them, while Staggers concentrated on the “bodies” by designing their durable hardware. Throughout the process, they learned from each other’s specialties and gained an appreciation for what engineering has to offer the planet.

    4
    Satellites and machine learning help ASU researcher Jiwei Li gather information about water quality by measuring aspects like cloudiness, colored dissolved organic matter (CDOM) and the chlorophyll present in phytoplankton. Image courtesy of Jiwei Li.

    The change of tides

    Jiwei Li uses satellite images and machine learning to study shallow water quality. Li is part of the center’s core faculty and is an assistant professor in the School of Earth and Space Exploration.

    Shallow water is not as widely studied as deep ocean water, but it’s vital to the planet’s health. It is home to precious coral reefs, carbon-capturing seagrass and other aquatic wildlife, and it’s often a place where the land’s nutrients and pollutants flow into the water.

    Thomas Ingalls is a geological sciences graduate student working in Li’s lab. He sees shallow water as an important resource for nations seeking to lower their carbon emissions. That’s because these aquatic environments are also good at storing carbon.

    By gathering millions of shallow water spectral images from satellites around the world, Li’s team creates regional mosaic maps. Machine learning helps turn that data into information about the water’s quality by measuring aspects like cloudiness, amount of dissolved organic matter and amount of the photosynthesis pigment chlorophyll a. They also map coral reefs and monitor their health in collaboration with the Allen Coral Atlas project.

    “The water quality and turbidity are especially dynamic. It’s not like a forest that doesn’t change much in one or two years. Water might change day by day,” Li says. “We need to use as many satellites as possible to increase the chances that we observe the water conditions.”

    The Carbon Mapper satellites will be able to see over 50 times as many spectral bands as traditional satellites, promising a wealth of data. The technology will boost Li and Ingalls’ ability to detect water quality, carbon content, microbe species, seagrasses and pollution sources.

    Knowledge makes the best policy

    The Center for Global Discovery and Conservation Science doesn’t stop at using its tech for research. A defining trait of the center is its goal to turn its findings into action, including helping to create informed policies.

    Part of that process involves closing the gap between policymakers and experts such as Indigenous communities and scientists.

    “In conservation research, there are traditional knowledges that come from people conserving and utilizing their areas for many generations,” Martin says. “Technology brings numbers to what is already known by those communities, but it acts as a way to translate information. It can give a visual picture that is sometimes more helpful to when you want to go to a policymaker and explain why we need to protect an area.”

    Li adds, “Sometimes the people using the technology don’t have a clear sense that what they can do can actually help people in policymaking. And policymakers don’t know what the technology side can give them. The Allen Coral Atlas is an example of a beautiful bridge that connects both.”

    The Allen Coral Atlas has helped nations’ leaders understand how to meet their goals for the 30 by 30 initiative, an agreement by over 100 countries that aims to protect 30% of Earth’s land and ocean by 2030. And it’s only one of many efforts at the center aiming for action and better policy. The Nature Conservancy’s Caribbean Division has used Li’s satellite work to plan its coral conservation efforts in that region. Martin’s use of Spectranomics in Peru led to the creation of a new national park. Seely is collaborating with the U.S. Forest Service and Hawaii’s Department of Land and Natural Resources to help protect ohia. And the Global Airborne Observatory has helped the state of Hawaii act to protect its coral reefs.

    While technology has advanced researchers’ ability to understand the environment, the need for this information continues to grow beyond what they can provide. Even planes can only travel so far in a day.

    The satellite technology from Carbon Mapper will be the next big advancement to help close this gap, giving policymakers around the world more immediate access to the knowledge they need and making an environmentally sustainable future possible all the sooner.

    The research efforts described in this article are funded in part by Vulcan Inc., Pew Trust, Avatar Alliance Foundation, Dalio Philanthropies, and the John D and Catherine T MacArthur Foundation.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    The Arizona State University Tempe Campus

    The Arizona State University is a public research university in the Phoenix metropolitan area. Founded in 1885 by the 13th Arizona Territorial Legislature, ASU is one of the largest public universities by enrollment in the U.S.

    One of three universities governed by the Arizona Board of Regents, The Arizona State University is a member of the Universities Research Association and classified among “R1: Doctoral Universities – Very High Research Activity.” The Arizona State University has nearly 150,000 students attending classes, with more than 38,000 students attending online, and 90,000 undergraduates and more nearly 20,000 postgraduates across its five campuses and four regional learning centers throughout Arizona. The Arizona State University offers 350 degree options from its 17 colleges and more than 170 cross-discipline centers and institutes for undergraduates students, as well as more than 400 graduate degree and certificate programs. The Arizona State Sun Devils compete in 26 varsity-level sports in the NCAA Division I Pac-12 Conference and is home to over 1,100 registered student organizations.

    The Arizona State University ‘s charter, approved by the board of regents in 2014, is based on the New American University model created by The Arizona State University President Michael M. Crow upon his appointment as the institution’s 16th president in 2002. It defines The Arizona State University as “a comprehensive public research university, measured not by whom it excludes, but rather by whom it includes and how they succeed; advancing research and discovery of public value; and assuming fundamental responsibility for the economic, social, cultural and overall health of the communities it serves.” The model is widely credited with boosting The Arizona State University ‘s acceptance rate and increasing class size.

    The university’s faculty of more than 4,700 scholars has included 5 Nobel laureates, 6 Pulitzer Prize winners, 4 MacArthur Fellows, and 19 National Academy of Sciences members. Additionally, among the faculty are 180 Fulbright Program American Scholars, 72 National Endowment for the Humanities fellows, 38 American Council of Learned Societies fellows, 36 members of the Guggenheim Fellowship, 21 members of the American Academy of Arts and Sciences, 3 members of National Academy of Inventors, 9 National Academy of Engineering members and 3 National Academy of Medicine members. The National Academies has bestowed “highly prestigious” recognition on 227 Arizona State University faculty members.
    History

    The Arizona State University was established as the Territorial Normal School at Tempe on March 12, 1885, when the 13th Arizona Territorial Legislature passed an act to create a normal school to train teachers for the Arizona Territory. The campus consisted of a single, four-room schoolhouse on a 20-acre plot largely donated by Tempe residents George and Martha Wilson. Classes began with 33 students on February 8, 1886. The curriculum evolved over the years and the name was changed several times; the institution was also known as Tempe Normal School of Arizona (1889–1903), Tempe Normal School (1903–1925), Tempe State Teachers College (1925–1929), Arizona State Teachers College (1929–1945), Arizona State College (1945–1958) and, by a 2–1 margin of the state’s voters, The Arizona State University in 1958.

    In 1923, the school stopped offering high school courses and added a high school diploma to the admissions requirements. In 1925, the school became the Tempe State Teachers College and offered four-year Bachelor of Education degrees as well as two-year teaching certificates. In 1929, the 9th Arizona State Legislature authorized Bachelor of Arts in Education degrees as well, and the school was renamed The Arizona State Teachers College. Under the 30-year tenure of president Arthur John Matthews (1900–1930), the school was given all-college student status. The first dormitories built in the state were constructed under his supervision in 1902. Of the 18 buildings constructed while Matthews was president, six are still in use. Matthews envisioned an “evergreen campus,” with many shrubs brought to the campus, and implemented the planting of 110 Mexican Fan Palms on what is now known as Palm Walk, a century-old landmark of the Tempe campus.

    During the Great Depression, Ralph Waldo Swetman was hired to succeed President Matthews, coming to The Arizona State Teachers College in 1930 from The Humboldt State Teachers College where he had served as president. He served a three-year term, during which he focused on improving teacher-training programs. During his tenure, enrollment at the college doubled, topping the 1,000 mark for the first time. Matthews also conceived of a self-supported summer session at the school at The Arizona State Teachers College, a first for the school.

    1930–1989

    In 1933, Grady Gammage, then president of The Arizona State Teachers College at Flagstaff, became president of The Arizona State Teachers College at Tempe, beginning a tenure that would last for nearly 28 years, second only to Swetman’s 30 years at the college’s helm. Like President Arthur John Matthews before him, Gammage oversaw the construction of several buildings on the Tempe campus. He also guided the development of the university’s graduate programs; the first Master of Arts in Education was awarded in 1938, the first Doctor of Education degree in 1954 and 10 non-teaching master’s degrees were approved by the Arizona Board of Regents in 1956. During his presidency, the school’s name was changed to Arizona State College in 1945, and finally to The Arizona State University in 1958. At the time, two other names were considered: Tempe University and State University at Tempe. Among Gammage’s greatest achievements in Tempe was the Frank Lloyd Wright-designed construction of what is Grady Gammage Memorial Auditorium/ASU Gammage. One of the university’s hallmark buildings, Arizona State University Gammage was completed in 1964, five years after the president’s (and Wright’s) death.

    Gammage was succeeded by Harold D. Richardson, who had served the school earlier in a variety of roles beginning in 1939, including director of graduate studies, college registrar, dean of instruction, dean of the College of Education and academic vice president. Although filling the role of acting president of the university for just nine months (Dec. 1959 to Sept. 1960), Richardson laid the groundwork for the future recruitment and appointment of well-credentialed research science faculty.

    By the 1960s, under G. Homer Durham, the university’s 11th president, The Arizona State University began to expand its curriculum by establishing several new colleges and, in 1961, the Arizona Board of Regents authorized doctoral degree programs in six fields, including Doctor of Philosophy. By the end of his nine-year tenure, The Arizona State University had more than doubled enrollment, reporting 23,000 in 1969.

    The next three presidents—Harry K. Newburn (1969–71), John W. Schwada (1971–81) and J. Russell Nelson (1981–89), including and Interim President Richard Peck (1989), led the university to increased academic stature, the establishment of The Arizona State University West campus in 1984 and its subsequent construction in 1986, a focus on computer-assisted learning and research, and rising enrollment.

    1990–present

    Under the leadership of Lattie F. Coor, president from 1990 to 2002, The Arizona State University grew through the creation of the Polytechnic campus and extended education sites. Increased commitment to diversity, quality in undergraduate education, research, and economic development occurred over his 12-year tenure. Part of Coor’s legacy to the university was a successful fundraising campaign: through private donations, more than $500 million was invested in areas that would significantly impact the future of The Arizona State University. Among the campaign’s achievements were the naming and endowing of Barrett, The Honors College, and the Herberger Institute for Design and the Arts; the creation of many new endowed faculty positions; and hundreds of new scholarships and fellowships.

    In 2002, Michael M. Crow became the university’s 16th president. At his inauguration, he outlined his vision for transforming The Arizona State University into a “New American University”—one that would be open and inclusive, and set a goal for the university to meet Association of American Universities criteria and to become a member. Crow initiated the idea of transforming The Arizona State University into “One university in many places”—a single institution comprising several campuses, sharing students, faculty, staff and accreditation. Subsequent reorganizations combined academic departments, consolidated colleges and schools, and reduced staff and administration as the university expanded its West and Polytechnic campuses. The Arizona State University’s Downtown Phoenix campus was also expanded, with several colleges and schools relocating there. The university established learning centers throughout the state, including The Arizona State University Colleges at Lake Havasu City and programs in Thatcher, Yuma, and Tucson. Students at these centers can choose from several Arizona State University degree and certificate programs.

    During Crow’s tenure, and aided by hundreds of millions of dollars in donations, The Arizona State University began a years-long research facility capital building effort that led to the establishment of the Biodesign Institute at The Arizona State University, the Julie Ann Wrigley Global Institute of Sustainability, and several large interdisciplinary research buildings. Along with the research facilities, the university faculty was expanded, including the addition of five Nobel Laureates. Since 2002, the university’s research expenditures have tripled and more than 1.5 million square feet of space has been added to the university’s research facilities.

    The economic downturn that began in 2008 took a particularly hard toll on Arizona, resulting in large cuts to The Arizona State University ‘s budget. In response to these cuts, The Arizona State University capped enrollment, closed some four dozen academic programs, combined academic departments, consolidated colleges and schools, and reduced university faculty, staff and administrators; however, with an economic recovery underway in 2011, the university continued its campaign to expand the West and Polytechnic Campuses, and establish a low-cost, teaching-focused extension campus in Lake Havasu City.

    As of 2011, an article in Slate reported that, “the bottom line looks good,” noting that:

    “Since Crow’s arrival, The Arizona State University’s research funding has almost tripled to nearly $350 million. Degree production has increased by 45 percent. And thanks to an ambitious aid program, enrollment of students from Arizona families below poverty is up 647 percent.”

    In 2015, the Thunderbird School of Global Management became the fifth Arizona State University campus, as the Thunderbird School of Global Management at The Arizona State University. Partnerships for education and research with Mayo Clinic established collaborative degree programs in health care and law, and shared administrator positions, laboratories and classes at the Mayo Clinic Arizona campus.

    The Beus Center for Law and Society, the new home of The Arizona State University’s Sandra Day O’Connor College of Law, opened in fall 2016 on the Downtown Phoenix campus, relocating faculty and students from the Tempe campus to the state capital.

     
  • richardmitnick 12:33 pm on November 14, 2022 Permalink | Reply
    Tags: "Columbia Engineering Arts and Sciences and Columbia Climate School to Launch $25M Climate Modeling Center", "LEAP": Learning the Earth with Artificial Intelligence and Physics, , Artificial Intelligence, , Data Sciences, , , Many parts of the world have been buffeted by extreme weather events., The expertise and deep knowledge of Columbia researchers and their partners will be the driving force behind the Learning the Earth with Artificial Intelligence and Physics Center., The Learning the Earth with Artificial Intelligence and Physics Center will capitalize on the broad and comprehensive expertise we have at Columbia in climate science and machine learning., The researchers aim to transform climate projection by converging geoscience with machine learning and training a new generation of scientists and engineers proficient in climate science.   

    From The Fu Foundation School of Engineering and Applied Science At Columbia University: “Columbia Engineering Arts and Sciences and Columbia Climate School to Launch $25M Climate Modeling Center” 

    From The Fu Foundation School of Engineering and Applied Science

    At

    Columbia U bloc

    Columbia University

    Funded by the National Science Foundation, the new center will integrate Columbia’s expertise in geoscience, AI, and data science to revolutionize climate projections both locally and globally.

    9.9.21 [In social media today]

    1
    Image By: Kiel Mutschelknaus/Columbia Engineering

    The ability to make accurate climate projections has never been more urgent, as we look back at a year when many parts of the world have been buffeted by extreme weather events–droughts, floods, wildfires, rising seas. While there is an ever-growing avalanche of raw data taken from the proliferation of observational technologies continuously monitoring the Earth’s system components–the atmosphere, ocean, land, and cryosphere–the sheer volume of the data has been very difficult to mine.

    Now, thanks to a $25 million five-year grant from the National Science Foundation Columbia University and partners are ready to launch a new Science and Technology Center focused on climate modeling, where Columbia researchers will get closer to building better climate models for a safer planet. The center, Learning the Earth with Artificial Intelligence and Physics (LEAP), will be led by Pierre Gentine, Maurice Ewing and J. Lamar Worzel Professor of Earth and Environmental Engineering at Columbia Engineering, who also has a joint appointment in Earth and Environmental Sciences in Arts and Sciences and is affiliated with the Earth Institute in the Climate School.

    “This NSF grant addresses a grand challenge facing our global society with long-term impact in many areas. Columbia University is uniquely positioned to develop transformative solutions by leveraging our transdisciplinary strengths and successful track records in convergent research. We are thrilled to be leading this important effort, together with our colleagues across the university and nationwide,” said Shih-Fu Chang, interim dean of Columbia Engineering. “Columbia University has long been at the forefront of climate science and AI research and we are excited to see where our work will take us.”

    The expertise and deep knowledge of Columbia researchers and their partners will be the driving force behind the Learning the Earth with Artificial Intelligence and Physics Center. Gentine will be joined by Deputy Director Galen McKinley, a professor of Earth and Environmental Sciences in the Faculty of Arts and Sciences who is based at Lamont-Doherty Earth Observatory, part of the Columbia Climate School.

    They will collaborate closely with Columbia faculty at the Engineering School, Lamont-Doherty Earth Observatory, the Faculty of Arts and Sciences, Teachers College, and Business and Social Work schools. The team will also collaborate with peers at the National Center for Atmospheric Research (NCAR), NASA’s Goddard Institute for Space Studies, New York University (NYU), and Universities of California-Irvine, Minnesota, and Montreal to provide a leap in the quality of the NSF-funded Community Earth System Model.

    “The Learning the Earth with Artificial Intelligence and Physics Center will capitalize on the broad, comprehensive expertise we have at Columbia in climate science and machine learning,” Gentine said. “Our goal is to eliminate some of the uncertainty about extreme weather across the globe–how hot the Earth will get and what this will mean for any one of us.”

    The researchers aim to transform climate projection by converging geoscience with machine learning and training a new generation of scientists and engineers proficient in climate science and data science, and by using AI to better understand and analyze the vast amount of data being collected. The center’s innovative approach to Earth system modeling is the first to use machine learning to address model structural deficiencies with new parameterizations, and develop new data products and model skill metrics. By embedding physical and biological knowledge into machine learning, the researchers expect the new center to revolutionize Earth system modeling.

    “This integration will spawn a new era of machine learning algorithms using physical knowledge to robustly extrapolate to future conditions,” McKinley added. “Our research will support climate adaptation around the world, as well as train the next generation of diverse students in the emerging new discipline of climate data science.”

    The Learning the Earth with Artificial Intelligence and Physics Center will be housed in Columbia Engineering and physically located in the School’s new Innovation hub on 125th street, just across from the Manhattanville campus. Joining Gentine and McKinley from Columbia Engineering, Arts and Sciences, and Lamont-Doherty are an interdisciplinary group of members actively contributing to data science, AI, and geoscience. Carl Vondrick from computer science at Columbia Engineering will serve as Director of Data Science of the center. Laure Zanna of NYU will serve as the Geoscience Director.

    At this highly collaborative center, Tian Zheng, chairperson and professor of statistics in Arts and Sciences, will serve as the Chief Convergence Officer and Education Director. Courtney Cogburn, a professor at Columbia’s School of Social Work, will lead the center’s diversity, equity, and inclusion efforts. Ryan Abernathey, an Arts and Sciences professor also based at Lamont-Doherty will lead development of data and computational tools. Vanessa Burbano, a professor at Columbia Business School, will lead the corporate engagement program.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Columbia University Fu Foundation School of Engineering and Applied Science is the engineering and applied science school of Columbia University. It was founded as the School of Mines in 1863 and then the School of Mines, Engineering and Chemistry before becoming the School of Engineering and Applied Science. On October 1, 1997, the school was renamed in honor of Chinese businessman Z.Y. Fu, who had donated $26 million to the school.

    The Fu Foundation School of Engineering and Applied Science maintains a close research tie with other institutions including National Aeronautics and Space Administration, IBM, Massachusetts Institute of Technology, and The Earth Institute. Patents owned by the school generate over $100 million annually for the university. Faculty and alumni are responsible for technological achievements including the developments of FM radio and the maser.

    The School’s applied mathematics, biomedical engineering, computer science and the financial engineering program in operations research are very famous and ranked high. The current faculty include 27 members of the National Academy of Engineering and one Nobel laureate. In all, the faculty and alumni of Columbia Engineering have won 10 Nobel Prizes in physics, chemistry, medicine, and economics.

    The school consists of approximately 300 undergraduates in each graduating class and maintains close links with its undergraduate liberal arts sister school Columbia College which shares housing with SEAS students.

    Original charter of 1754

    Included in the original charter for Columbia College was the direction to teach “the arts of Number and Measuring, of Surveying and Navigation […] the knowledge of […] various kinds of Meteors, Stones, Mines and Minerals, Plants and Animals, and everything useful for the Comfort, the Convenience and Elegance of Life.” Engineering has always been a part of Columbia, even before the establishment of any separate school of engineering.

    An early and influential graduate from the school was John Stevens, Class of 1768. Instrumental in the establishment of U.S. patent law. Stevens procured many patents in early steamboat technology; operated the first steam ferry between New York and New Jersey; received the first railroad charter in the U.S.; built a pioneer locomotive; and amassed a fortune, which allowed his sons to found the Stevens Institute of Technology.

    When Columbia University first resided on Wall Street, engineering did not have a school under the Columbia umbrella. After Columbia outgrew its space on Wall Street, it relocated to what is now Midtown Manhattan in 1857. Then President Barnard and the Trustees of the University, with the urging of Professor Thomas Egleston and General Vinton, approved the School of Mines in 1863. The intention was to establish a School of Mines and Metallurgy with a three-year program open to professionally motivated students with or without prior undergraduate training. It was officially founded in 1864 under the leadership of its first dean, Columbia professor Charles F. Chandler, and specialized in mining and mineralogical engineering. An example of work from a student at the School of Mines was William Barclay Parsons, Class of 1882. He was an engineer on the Chinese railway and the Cape Cod and Panama Canals. Most importantly he worked for New York, as a chief engineer of the city’s first subway system, the Interborough Rapid Transit Company. Opened in 1904, the subway’s electric cars took passengers from City Hall to Brooklyn, the Bronx, and the newly renamed and relocated Columbia University in Morningside Heights, its present location on the Upper West Side of Manhattan.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 9:13 pm on October 20, 2022 Permalink | Reply
    Tags: "Deep learning with light", "Silicon photonics", , Artificial Intelligence, , , , , , , ,   

    From The Massachusetts Institute of Technology: “Deep learning with light” 

    From The Massachusetts Institute of Technology

    10.20.22
    Adam Zewe

    1
    This rendering shows a novel piece of hardware, called a smart transceiver, that uses technology known as “silicon photonics” to dramatically accelerate one of the most memory-intensive steps of running a machine-learning model. This can enable an edge device, like a smart home speaker, to perform computations with more than a hundred-fold improvement in energy efficiency. Image: Alex Sludds. Edited by MIT News.

    Ask a smart home device for the weather forecast, and it takes several seconds for the device to respond. One reason this latency occurs is because connected devices don’t have enough memory or power to store and run the enormous machine-learning models needed for the device to understand what a user is asking of it. The model is stored in a data center that may be hundreds of miles away, where the answer is computed and sent to the device.

    MIT researchers have created a new method for computing directly on these devices, which drastically reduces this latency. Their technique shifts the memory-intensive steps of running a machine-learning model to a central server where components of the model are encoded onto light waves.

    The waves are transmitted to a connected device using fiber optics, which enables tons of data to be sent lightning-fast through a network. The receiver then employs a simple optical device that rapidly performs computations using the parts of a model carried by those light waves.

    This technique leads to more than a hundredfold improvement in energy efficiency when compared to other methods. It could also improve security, since a user’s data do not need to be transferred to a central location for computation.

    This method could enable a self-driving car to make decisions in real-time while using just a tiny percentage of the energy currently required by power-hungry computers. It could also allow a user to have a latency-free conversation with their smart home device, be used for live video processing over cellular networks, or even enable high-speed image classification on a spacecraft millions of miles from Earth.

    “Every time you want to run a neural network, you have to run the program, and how fast you can run the program depends on how fast you can pipe the program in from memory. Our pipe is massive — it corresponds to sending a full feature-length movie over the internet every millisecond or so. That is how fast data comes into our system. And it can compute as fast as that,” says senior author Dirk Englund, an associate professor in the Department of Electrical Engineering and Computer Science (EECS) and member of the MIT Research Laboratory of Electronics.

    Joining Englund on the paper is lead author and EECS grad student Alexander Sludds; EECS grad student Saumil Bandyopadhyay, Research Scientist Ryan Hamerly, as well as others from MIT, the MIT Lincoln Laboratory, and Nokia Corporation. The research is published today in Science [below].

    Lightening the load

    Neural networks are machine-learning models that use layers of connected nodes, or neurons, to recognize patterns in datasets and perform tasks, like classifying images or recognizing speech. But these models can contain billions of weight parameters, which are numeric values that transform input data as they are processed. These weights must be stored in memory. At the same time, the data transformation process involves billions of algebraic computations, which require a great deal of power to perform.

    The process of fetching data (the weights of the neural network, in this case) from memory and moving them to the parts of a computer that do the actual computation is one of the biggest limiting factors to speed and energy efficiency, says Sludds.

    “So our thought was, why don’t we take all that heavy lifting — the process of fetching billions of weights from memory — move it away from the edge device and put it someplace where we have abundant access to power and memory, which gives us the ability to fetch those weights quickly?” he says.

    The neural network architecture they developed, “Netcast”, involves storing weights in a central server that is connected to a novel piece of hardware called a smart transceiver. This smart transceiver, a thumb-sized chip that can receive and transmit data, uses technology known as “silicon photonics” to fetch trillions of weights from memory each second.

    It receives weights as electrical signals and imprints them onto light waves. Since the weight data are encoded as bits (1s and 0s) the transceiver converts them by switching lasers; a laser is turned on for a 1 and off for a 0. It combines these light waves and then periodically transfers them through a fiber optic network so a client device doesn’t need to query the server to receive them.

    “Optics is great because there are many ways to carry data within optics. For instance, you can put data on different colors of light, and that enables a much higher data throughput and greater bandwidth than with electronics,” explains Bandyopadhyay.

    Trillions per second

    Once the light waves arrive at the client device, a simple optical component known as a broadband “Mach-Zehnder” modulator uses them to perform super-fast, analog computation. This involves encoding input data from the device, such as sensor information, onto the weights. Then it sends each individual wavelength to a receiver that detects the light and measures the result of the computation.

    The researchers devised a way to use this modulator to do trillions of multiplications per second, which vastly increases the speed of computation on the device while using only a tiny amount of power.

    “In order to make something faster, you need to make it more energy efficient. But there is a trade-off. We’ve built a system that can operate with about a milliwatt of power but still do trillions of multiplications per second. In terms of both speed and energy efficiency, that is a gain of orders of magnitude,” Sludds says.

    They tested this architecture by sending weights over an 86-kilometer fiber that connects their lab to MIT Lincoln Laboratory. Netcast enabled machine-learning with high accuracy — 98.7 percent for image classification and 98.8 percent for digit recognition — at rapid speeds.

    “We had to do some calibration, but I was surprised by how little work we had to do to achieve such high accuracy out of the box. We were able to get commercially relevant accuracy,” adds Hamerly.

    Moving forward, the researchers want to iterate on the smart transceiver chip to achieve even better performance. They also want to miniaturize the receiver, which is currently the size of a shoe box, down to the size of a single chip so it could fit onto a smart device like a cell phone.

    “Using photonics and light as a platform for computing is a really exciting area of research with potentially huge implications on the speed and efficiency of our information technology landscape,” says Euan Allen, a Royal Academy of Engineering Research Fellow at the University of Bath, who was not involved with this work. “The work of Sludds et al. is an exciting step toward seeing real-world implementations of such devices, introducing a new and practical edge-computing scheme whilst also exploring some of the fundamental limitations of computation at very low (single-photon) light levels.”

    The research is funded, in part, by NTT Research, the National Science Foundation, the Air Force Office of Scientific Research, the Air Force Research Laboratory, and the Army Research Office.

    Science paper:
    Science

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 5:30 am on August 2, 2022 Permalink | Reply
    Tags: "Making Intelligent Traffic", A camera was directed at the area determining the cars' locations centrally by computer vision and sent the information to the cars., , Artificial Intelligence, Communication Science, , Maybe in the future there could be a satellite system and the automobile industry could use the software on their vehicles!, The main objective was to save people’s time and make traffic safer by making travel more efficient., The software developed by the students predicted where the cars should go giving them instructions and steering them in the right direction., , The team built a road network with crossings and streets which had a number of alternative simulation modes., The vehicles had small barcodes attached and the camera detected and tracked these.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Making Intelligent Traffic” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    8.2.22
    Tanya Petersen

    Bachelor’s project (5). Delivering sustainability in traffic is no easy feat. Could software that globally coordinates cars to avoid traffic jams and congestion be the answer?

    In 2019 drivers in Rome lost an average of 166 hours to traffic jams and congestion. In Paris it was 165, Dublin 154 and Athens 107. A 2016 report published by the Swiss Federal Government showed that traffic congestion cost the country CHF 1.6 billion annually in lost time, wasted fuel, environmental damage and accidents.

    This year a group of EPFL bachelor’s students in the School of Computer and Communication Sciences undertook a project to Make Intelligent Traffic as part of the Making Intelligent Things course. They used different centralized traffic algorithms on groups of 3D printed Arduino cars to try to coordinate traffic at the same time as allowing users to know the road system and where cars were, in such a way that drivers could avoid traffic jams and congestion.

    1
    Students designed the cars. © Anirudhh Ramesh.

    “We wanted to build a traffic simulation that was more efficient than what we have right now in the world. We had a lot of ideas and in the end built a prototype in which cars didn’t speak directly with each other or determine their own locations but where a camera was directed at the area determining the cars’ location centrally by computer vision and sending that information to the cars,” said Anirudhh Ramesh, a second-year IC bachelor’s student and team member.

    The team built a road network with crossings and streets which had a number of alternative simulation modes. In one the cars tried to reach a destination that was randomly generated, in another the cars needed to pick up passengers like in a taxi service. The vehicles had small barcodes attached and the camera detected and tracked these. The software developed by the students predicted where the cars should go giving them instructions and steering them in the right direction.

    Small scale demonstration

    Currently, autonomous car projects are about specifically making one car able to successfully navigate traffic, avoid dangerous situations and stay on the road. They are not part of a larger network such as this and do not communicate with each other. “On a small, pilot scale this project demonstrated that centralized traffic algorithms were able to make decisions on where the cars should travel in a coordinated manner. It’s wonderful that these undergraduates came together with all their ideas and realized them in a very short time span,” said Professor Christoph Koch, who teaches the course.

    “Our main objective was to save people’s time and make traffic safer by making travel more efficient. In creating a system that’s more efficient we also hoped to save energy and fuel, making driving more sustainable in many ways,” Ramesh continued.

    2
    The cars. © Anirudhh Ramesh.

    A real challenge!

    But the project wasn’t all smooth sailing. “Everything that you thought would be a challenge was a challenge! From coming up with a good design for the cars and back end, to getting the camera to detect all the cars and make the Bluetooth connect, there were a lot of loopholes we had to go through to get it to work. I think in the end, ironically, the computer vision things that we had to do were the easiest!” added Louis Dumas, a third-year bachelor’s student and also a team member.

    And where might the students want to take this robust and successful simulation project? “We made our project open source and it would certainly be great to see this advance further, perhaps with future students from the course?” said Dumas. “We have laid out a very strong foundation for hardware traffic simulations, and in doing so have learnt many invaluable skills. Maybe in the future we could have a satellite system and the automobile industry could use our software on their vehicles! But we know that’s a long way off!” concluded Ramesh.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: