Tagged: Applied Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:15 pm on May 8, 2023 Permalink | Reply
    Tags: , "Ultrafast laser enhances material’s magnetism at effective temperature", Applied Physics, , , , , MPG Institute for the Structure and Dynamics of Matter in Hamburg (DE), , Scientists are searching for materials with quantum properties that work at ambient temperatures.,   

    From The College of Engineering At Cornell University Via “The Chronicle” With The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE) : “Ultrafast laser enhances material’s magnetism at effective temperature” 

    2

    From The College of Engineering

    At

    Cornell University

    Via

    “The Chronicle”

    With

    The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE).

    5.8.23
    Syl Kacapyr | Cornell Engineering

    3
    In this conceptual image a laser illuminates ballerinas, representing the interactions between electron spins in a sample of yttrium titanate, the atomic structure of which can be changed to stabilize its magnetism at desired temperatures. Credit: Joerg Harms/MPG Institute for the Structure and Dynamics of Matter (DE).

    In this conceptual image a laser illuminates ballerinas, representing the interactions between electron spins in a sample of yttrium titanate, the atomic structure of which can be changed to stabilize its magnetism at desired temperatures.

    Using a precisely tuned, ultrafast laser, a Cornell researcher showed that the atomic structure of yttrium titanate could be changed to stabilize its magnetism at temperatures three times higher than was previously possible – a promising finding for applications in quantum computing and other next-generation devices.

    In the quest to develop faster and more efficient types of computers, scientists are searching for materials with quantum properties that work at ambient temperatures. Being able to control magnetism – which depends on the microscopic interactions between electron spins – using laser pulses holds promise for energy-efficient, high-frequency computers and digital memories.

    Ankit Disa ’10, assistant professor in applied and engineering physics, is lead author of “Photo-Induced High-Temperature Ferromagnetism in YTiO3,” published May 3 in Nature [below].

    Disa and collaborators at the MPG Institute for the Structure and Dynamics of Matter in Hamburg (DE), found that by using different frequencies of the light pulses in a specially designed terahertz laser source, they could alter the atomic structure of yttrium titanate in different ways – sometimes getting significant enhancements of the magnetic properties with exponential improvements in the temperature scale.

    At other frequencies, however, the magnetism was not as strong or showed no change.

    “The results of our work are encouraging and exciting for several reasons,” Disa said. “We were able to demonstrate the ability to manipulate the structure of a material, which helps us understand the structure-property relationships within the material. Second, from a technological point of view, we found that using light pulses that are a few hundred femtoseconds long – or less than a millionth of a millionth of a second – we can change the magnetic state of an atom.”

    This could enable new kinds of computing – based on electron spins, rather than charge – that could operate orders of magnitude faster and more efficiently than existing computing technologies. But controlling magnetism is challenging, Disa said.

    “To control magnetism, you have to apply magnetic field,” he said. “This often requires bulky electromagnetic coils and is difficult to do on a microscopic scale. The fact that we showed how to do this with light, and could improve an existing magnet’s properties in this way, could help push this type of technology forward.”

    Disa plans to further develop the experimental setup and collaborate with materials design experts – researchers who are creating new materials that can be built atomic layer by atomic layer – to explore new ways to optimize material properties with light, including magnets, electronic materials and superconductors.

    The research project’s experimental work was performed at the MPG Institute. Other collaborators were from Harvard University, the Leibniz Institute for Solid State and Materials Research (DE), and Oxford University (UK).

    Nature

    Fig. 1: Fluctuating spin–orbital order in YTiO3.

    a) Crystal structure along with the associated low-temperature ferromagnetic and orbital ordering pattern. The orthorhombic structure determines the crystal field splitting and orbital mixing of the Ti t2g levels on each Ti site. b) Magnetization as a function of magnetic field measured at T << Tc, which saturates at high fields to roughly 0.8 μB per Ti, well below the theoretical limit. Fluctuations of the lattice and orbitals weaken ferromagnetic order through competing antiferromagnetic interactions, manifesting as a diminished magnetic moment and reduced critical temperature. c) Magnetization as a function of temperature. Spin correlations extend well above Tc = 27 K. The inset schematically shows the fluctuating orbital and spin configurations within the shaded region above Tc.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    New methods are enabling physicists and biologists at the The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE) to break new scientific ground. With the help of new radiation sources, especially the x-ray free-electron laser being built at the DESY in Hamburg, the researchers can show the properties and behavior of matter at a spatial resolution of a few nanometers and at time intervals of a few billionths of a billionth of a second. This provides them with completely new insights into the structure and function of biological materials and into the properties of solids and their electronic and structural dynamics. The coherent light of lasers enables the physicists to inspect the collective properties, for example superconductivity, of complex solids, including many types of ceramics.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes.

    The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institutein New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.
    Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 12:18 pm on May 8, 2023 Permalink | Reply
    Tags: "Strings of magnetic energy shown to flex and wiggle and reconnect", "Topological behavior", A geometry called "Santa Fe spin ice", A well-known phenomenon called "superparamagnetism", Applied Physics, , , Nanomagnetics, , , , , Topological physics has raised much recent interest mostly in the quantum domain., Video clips of the nanomagnets in space and in time,   

    From The School of Engineering and Applied Science At Yale University: “Strings of magnetic energy shown to flex and wiggle and reconnect” 

    Yale SEAS

    From The School of Engineering and Applied Science

    At

    Yale University

    5.4.23

    A multi-institutional team exploring the physics of collective behavior has developed and measured a model nanomagnetic array in which the behavior can be best understood as that of a set of wiggling strings. The strings, which are composed of connected points of high energy among the lattice, can stretch and shrink, but also reconnect. What makes these strings special is that they are limited to certain endpoints and must connect to those endpoints in particular ways. These constraints on the strings’ behavior are an example of what physicists call “topological behavior”, which is related to a wide range of topics from the shape of a donut to how electrons travel through certain cutting-edge semiconductors. The results were recently published in a paper in Science [below].

    “Topological physics has raised much recent interest, mostly in the quantum domain,” said DOE Los Alamos National Laboratory researcher Cristiano Nisoli, one of the authors of the work. “We had already demonstrated a few times, theoretically and experimentally, that features once believed to be inherently quantum can be reproduced by systems of classical interacting nanomagnets.”

    According to co-author, Yale applied physics professor Peter Schiffer, “This system is an instance in which topologically driven features appear in a purely classical material system—that makes them easier to study and characterize.”

    2
    A microscopy snapshot of a lattice of frustrated nanomagnets. The red lines connect dynamic points of high energy at the vertices of the lattice, which are indicated by the yellow dots. (Image courtesy Los Alamos National Laboratory)

    The work is in the context of an ongoing collaboration between Nisoli’s group in the Los Alamos Theoretical division and the experimental work of Schiffer and his team at Yale University. Starting in 2006, together with others, the two had introduced the idea of bottom-up fabrication of “artificial spin ice” structures made of interacting magnetic nano-islands. The team for this study also included Yale researchers Xiaoyu Zhang, Grant Fitez ’25, Shayaan Subzwari ’23, Ioan-Augustin Chioar, Hilal Saglam, and Nicholas Bingham (now at the University of Maine), as well as Justin Ramberger and Chris Leighton at the University of Minnesota.

    “Initially, we concentrated on simple geometries and models, sometimes mimicking existing natural materials,” Nisoli said. “But since the beginning, the idea was more ambitious: instead of finding serendipitously exotic or useful phenomena in natural materials, we sought to produce artificial ones where new phenomena could be designed-in, and checked in highly controllable ways, perhaps in view of future functionalities, such as memory storage or computation.”

    The teams developed, first theoretically at Los Alamos, and then experimentally at Yale and the Advanced Light Source at the DOE’s Lawrence Berkeley National Laboratory, a geometry called “Santa Fe spin ice”, inspired by the shapes in a brick floor in Santa Fe, New Mexico.

    “The interesting fact about Santa Fe spin ice is that, although it is made of a bunch of binary magnets, it can also be completely described as a set of continuous strings,” Nisoli noted.

    In a previous work, the authors fabricated the Santa Fe spin ice and demonstrated the existence of these strings and their properties. In the present work, they studied how the strings move. Using the “photoemission electron microscopy” characterization done at Berkeley, Schiffer of Yale said, was especially valuable in that “it effectively provides video clips of the nanomagnets in space and in time, so we could watch them as they spontaneously switched their north and south poles. The nano-islands are fabricated to be very thin, just a few nanometers, so that they flip their poles just from being at finite temperature, in a well-known phenomenon called ‘superparamagnetism’.”

    At high temperatures, the researchers observed the merging and reconnecting of strings, resulting in the system transitioning between topologically distinct configurations. But below a crossover temperature, the string motion was limited to simple changes in length and shape. Therefore, the work shows that there is a dynamical crossover: below a certain temperature those topologically non-trivial moves become suppressed, and only the topologically trivial (wiggling, extending, contracting) remain.

    “Here, we have shown a real system, artificially fabricated, that experimentally demonstrates a kinetic crossover that breaks the rule of randomness, or ergodicity, because below a certain temperature it suppresses the kinetic pathways that are topologically non-trivial, and remains confined into a topological class,” Nisoli said. “With the measurements we could perform, we were able to literally watch these nano-scale strings go through their motions and make an unexpected transition in behavior.”

    “This level of insight is unusual for any system, and it sets the stage for other topological studies in the future,” said Schiffer.

    Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 9:01 pm on April 27, 2023 Permalink | Reply
    Tags: "ONN": optical neural network, "Optical neural networks hold promise for image processing", , Applied Physics, , , ONN pre-processors can achieve compression ratios of up to 800-to-1 — the equivalent of compressing a 1600-pixel input to just 4 pixels.,   

    From The College of Engineering At Cornell University Via “The Chronicle”: “Optical neural networks hold promise for image processing” 

    2

    From The College of Engineering

    At

    Cornell University

    Via

    “The Chronicle”

    4.27.23
    Diane Tessaglia-Hymes | Cornell Engineering

    Media Contact
    Becka Bowyer
    rpb224@cornell.edu
    607-220-4185

    1
    Doctoral student Mandar Sohoni, left, and postdoctoral researcher Tianyu Wang adjust their research setup that tests the ability of an optical neural network to measure objects in a 3D scene. Charissa King-O’Brien/Provided.

    Cornell researchers have developed an optical neural network (ONN) that can filter relevant information from a scene before the visual image is detected by a camera, a method that may make it possible to build faster, smaller and more energy-efficient image sensors.

    3
    A multilayer optical-neural-network encoder as a frontend for image sensing. Credit: Nature Photonics (2023). DOI: 10.1038/s41566-023-01170-8

    In a paper published March 23 in Nature Photonics [below], researchers in the lab of Peter McMahon, assistant professor of applied and engineering physics in Cornell Engineering, have been able to demonstrate that ONN pre-processors can achieve compression ratios of up to 800-to-1 — the equivalent of compressing a 1600-pixel input to just 4 pixels — while still enabling high accuracy across several representative computer-vision tasks.

    Led by Tianyu Wang, an Eric and Wendy Schmidt AI in Science Postdoctoral Fellow, and doctoral student Mandar Sohoni, the researchers tested the ONN image sensor with machine-vision benchmarks, used it to classify cell images in flow cytometers, and further demonstrated its ability measure and identify objects in 3D scenes.

    The difference between digital systems and an optical neural network is that with digital systems, images are first saved and then sent to a digital electronic processor that extracts information. Such electronic processing is power-consuming and, more importantly, requires far more time for the data to be processed and interpreted.

    “Our setup uses an optical neural network, where the light coming into the sensor is first processed through a series of matrix-vector multiplications that compresses data to the minimum size needed — in this case, four pixels,” Wang said. “This is similar to how human vision works: We notice and remember the key features of what we see, but not all the unimportant details. By discarding irrelevant or redundant information, an ONN can quickly sort out important information, yielding a compressed representation of the original data, which may have a higher signal-to-noise ratio per camera pixel.”

    The group also tested reconstructing the original image using the data generated by ONN encoders that were trained only to classify the image.

    “The reconstructed images retained important features, suggesting that the compressed data contained more information than just the classification,” Wang said. “Although not perfect, this was an exciting result, because it suggests that with better training and improved models, the ONN could yield more accurate results.”

    Wang and Sohoni believe their work could have practical applications in fields such as early cancer detection research, where cancer cells need to be isolated from millions or billions of other cells. Using flow cytometry, cells flow rapidly past a detector in a microfluidic flow channel. An ONN that has been trained to identify the physical characteristics of the cancer cells can rapidly detect and isolate those cells instantly.

    “To generate a robust sample of cells that would hold up to statistical analysis, you need to process probably 100 million cells,” Sohoni said. “In this situation, the test is very specific, and an optical neural network can be trained to allow the detector to process those cells very quickly, which will generate a larger, better dataset.”

    Sohoni said ONNs can also be useful in situations where very low-power sensing or computing is needed. For example, image sensing on a satellite in space would require a device that uses very little power. In this scenario, the ability of ONNs to compress spatial information can be combined with the ability of event cameras to compress temporal information, since the latter is only triggered when the input signal changes.

    This work was supported by funding from NTT Research, the National Science Foundation, the Kavli Institute at Cornell, the David and Lucile Packard Foundation and the Canadian Institute for Advanced Research Quantum Information Science Program.

    Nature Photonics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institutein New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.
    Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 8:49 pm on April 17, 2023 Permalink | Reply
    Tags: "With Higher Frequencies Faster Communications", Applied Physics, , , , The world’s first electromechanical resonator to operate beyond 100 GHz,   

    From The School of Engineering and Applied Science At Yale University: “With Higher Frequencies Faster Communications” 

    Yale SEAS

    From The School of Engineering and Applied Science

    At

    Yale University

    4.10.23

    In what has the potential to significantly advance wireless communications and mechanical quantum systems, researchers at Yale have demonstrated the world’s first electromechanical resonator to operate beyond 100 GHz.

    1
    Sub-terahertz electromechanics

    Conducted in the lab of Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics, the results of the work are published in Nature Electronics [below].

    Developing resonators with higher operating frequencies is an ongoing goal within the electronics field. That’s because the higher the frequency, the faster the speed of communication. Getting resonators to operate within the sub-terahertz (THz) regime—that is, between 100 and 300 gigahertz (GHz)—is a particularly sought-after target.

    “Going to higher frequencies is always a goal for us, because it makes the communication faster,” said Jiacheng Xie, a Ph.D. student in Tang’s lab, and lead author of the study. “So going to sub-terahertz — in this case, to 100 GHz — brings a whole lot more bandwidth for future communication devices.”

    Tang noted that this might be the most significant technological impact of the work. Electromechanical resonators of higher and higher frequencies are the “behind-the-scenes drivers” in wireless communications.

    “Mechanical resonators working beyond 100GHz was unthinkable before this work,” he said. “This is a true milestone to celebrate.”

    Such resonators are also of interest in studying quantum phenomena of mechanical entities, as they can maintain the quantum ground state at kelvin temperatures rather than the millikelvin temperatures demanded by gigahertz resonators.

    “Going into higher frequencies means that our resonators are more resilient to thermal noise, and that means that we don’t have to cool the resonators down to millikelvin,” Xie said.

    Xie noted that few instruments can go to such a high frequency, adding that the signal generators in most labs can only support a frequency much lower than 100 GHz.

    “To review the very small signals at such high frequency, we have to adopt particular designs to achieve that,” he said. “In this work, we use a millimeter-wave resonator that is incorporated into a suspended lithium niobate platform, which can provide the efficient electromechanical transduction in the sub-terahertz regime. And without it, it would not be easy at all.”

    Nature Electronics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 3:20 pm on April 12, 2023 Permalink | Reply
    Tags: "When electrons dress up in light", A. V. Rzhanov Institute (RU), Applied Physics, , , , , Paul Scherrer Institut (CH), , Surprisingly the Floquet bands form after a single optical cycle-a very short time., , The question of how long it takes the electrons to ‘clothe’ themselves with light – have remained unknown until now., The team chose photoelectron spectroscopy to study the surface of a crystal., The team uses ultrashort and strong light fields to directly observe how exotic energetic states known as Floquet bands emerge in a crystal., The University of Marburg [Philipps-Universität Marburg](DE), University of Regensburg [Universität Regensburg](DE)   

    From The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE) : “When electrons dress up in light” 

    From The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE)

    4.12.23

    Michael Sentef
    Emmy Noether Research Group Leader,
    IMPRS Faculty
    +49 (0)40 8998-88350
    michael.sentef@mpsd.mpg.de

    Jenny Witt
    Communications & PR
    +49 (0)40 8998-88044
    pr@mpsd.mpg.de

    New material properties, at lightning speed and on demand – this vision moves a step closer thanks to recent findings from a pan-European physics research group involving the MPSD. The team uses ultrashort and strong light fields to directly observe how exotic energetic states, known as Floquet bands, emerge in a crystal. The scientists report their findings in the research journal Nature [below].

    1
    When electrons (spheres) in the surface of a topological insulator are accelerated by strong light waves according to their band structure (lowest cone), Floquet-Bloch replicas (higher cones) of the original band structure are formed. Videos of the band structure with sub-cycle time resolution reveal for the first time the formation dynamics (cones in the background). © Brad Baxley (parttowhole.com)

    2
    Conceptual idea of Floquet band engineering on the subcycle scale. Credit: Nature (2023)

    “The discovery of new material properties usually depends on our ability to control the chemical composition of the material,” says Ulrich Höfer, professor of experimental physics at Philipps-Universität Marburg and visiting professor at the University of Regensburg. “The purely optical manipulation of material properties, on the other hand, could take physics into a new era by enabling new functions on demand.”Exciting electrons periodically with strong light leads to exotic quantum effects: The periodic perturbations from the strong light field cause the electrons to have not just one fixed energy state, but many evenly spaced energy states. “The original energy state surrounds itself, as it were, with several envelopes of light,” explains Rupert Huber, professor at the Institute for Experimental and Applied Physics at the University of Regensburg and joint lead author. Experts refer to this state as a Floquet state. “However, the dynamic properties of such states – for example, the question of how long it takes the electrons to ‘clothe’ themselves with light – have remained unknown until now,” Huber elaborates.

    The Collaborative Research Centres Structure and Dynamics of Internal Interfaces and Emergent Relativistic Effects in Condensed Matter of the German Research Foundation at the Universities of Marburg and Regensburg offer ideal conditions to close these research gaps. The team chose photoelectron spectroscopy to study the surface of a crystal. “With our measurements, we went beyond the limit of what could be realized with this spectroscopy to date in terms of time resolution in strong light fields,” emphasizes Suguru Ito, postdoc at Philipps University Marburg and the paper’s lead author. As a result, the team made an unforeseen discovery, he says: “Surprisingly, the Floquet bands form after a single optical cycle, a very short time.”

    “The reviewers could hardly believe this at first!” adds Höfer. But the clear experimental results are supported by theoretical modelling, carried out by Michael Schüler from the Paul Scherrer Institute in Villigen, Switzerland, and Michael Sentef, then group leader at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg and now Professor of Solid State Physics at the University of Bremen.

    The work provides important new information on the evolution of Floquet bands, explains Sentef: “The dressing of electrons with light is often particularly difficult in solids because the energy introduced is quickly converted into heat. By demonstrating that such dressing happens after just a single optical cycle, we pave the way for changing solid-state properties very quickly and very strongly with light.”

    “Our experiment opens up the possibility of visualizing a wide range of transient quantum states,” adds Huber. “This paves the way towards tailored quantum functions and ultrafast electronics.”

    In addition to the research groups from Marburg and Regensburg, scientists from the MPSD, the Paul Scherrer Institute, and the A. V. Rzhanov Institute in Novosibirsk, Russia, participated in the publication. The cooperation with the Russian colleague took place prior to the Ukraine war. The German Research Foundation funded participating scientists through collaborative research centers in Marburg and Regensburg and through the Emmy Noether program. Several international funding organizations provided further financial support.

    Nature

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    New methods are enabling physicists and biologists at the The MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE) to break new scientific ground. With the help of new radiation sources, especially the x-ray free-electron laser being built at the DESY in Hamburg, the researchers can show the properties and behavior of matter at a spatial resolution of a few nanometers and at time intervals of a few billionths of a billionth of a second. This provides them with completely new insights into the structure and function of biological materials and into the properties of solids and their electronic and structural dynamics. The coherent light of lasers enables the physicists to inspect the collective properties, for example superconductivity, of complex solids, including many types of ceramics.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 9:14 am on April 9, 2023 Permalink | Reply
    Tags: "Laboratory Solar Flares Reveal Clues to Mechanism Behind Bursts of High-Energy Particles", Applied Physics, , , , Corona loops are arches of plasma that protrude from the surface of the sun aligned along magnetic field lines., , Each experiment consumes about as much energy as it takes to run a 100-watt lightbulb for about a minute., Simulating the loops in a lab, Solar corona loops do not appear to be a single structure but rather are composed of fractally braided strands akin to a large rope., , Some of the energy in the flare takes the form of charged particles and "hard X-rays"., , The Earth's own magnetic field and atmosphere act as a shield that protects life on the surface from getting cooked by these torrents of energy., The loop gets longer and skinnier until the strands just snap., The loops can abruptly blast a tremendous amount of energy—billions of times stronger than the most powerful nuclear explosion on Earth—into space., The loops which may project 100000 kilometers above the sun's surface can persist for minutes to hours., The scientists capture each loop with a camera capable of taking 10 million frames per second and they then study the resulting images., The team noted a negative voltage spike associated with an X-ray burst at the exact instant a strand broke.   

    From The California Institute of Technology: “Laboratory Solar Flares Reveal Clues to Mechanism Behind Bursts of High-Energy Particles” 

    Caltech Logo

    From The California Institute of Technology

    4.6.23
    Robert Perkins

    1
    Simulating solar flares on a scale the size of a banana, researchers at Caltech have parsed out the process by which these massive explosions blast potentially harmful energetic particles and X-rays into the cosmos. Caltech.

    Corona loops are arches of plasma that protrude from the surface of the sun, aligned along magnetic field lines. The magnetic field lines act like highways for charged particles, guiding the motion of the electrons and ions that comprise plasma. The loops, which may project 100,000 kilometers above the sun’s surface, can persist for minutes to hours. The loops usually grow and evolve slowly but sometimes can abruptly blast a tremendous amount of energy—billions of times stronger than the most powerful nuclear explosion on Earth—into space. This sudden blast of energy is called a solar flare.

    Some of the energy in the flare takes the form of charged particles and “hard X-rays,” which are high-energy electromagnetic waves like those used to image bones in a doctor’s office. The Earth’s own magnetic field and atmosphere act as a shield that protects life on the surface from getting cooked by these torrents of energy, but they have been known to disrupt communications and power grids. They also pose an ongoing threat to spacecraft and astronauts in space.

    While the fact that solar flares generate energetic particles and X-ray bursts has long been known, scientists are only starting to piece together the mechanism by which they do so.

    Researchers have two options for deciphering how and why the loops form and change. The first is to observe the sun and hope to capture the phenomenon in sufficiently fine detail to yield relevant information. The second is to simulate the loops in a lab. Caltech’s Paul Bellan, professor of applied physics, chose the latter.

    2
    A simulated corona loop in the Bellan Lab. Caltech.

    In a lab on the first floor of the Thomas J. Watson, Sr., Laboratories of Applied Physics on Caltech’s campus, Bellan built a vacuum chamber with twin electrodes inside. To simulate the phenomenon, he charged a capacitor with enough energy to run the City of Pasadena for a few microseconds, then discharged it through the electrodes to create a miniature solar corona loop.

    Each loop lasts about 10 microseconds, and has a length of about 20 centimeters (cm) and a diameter of about 1 cm. But structurally, Bellan’s loops are identical to the real thing, offering him and his colleagues the opportunity to simulate and study them at will.

    “Each experiment consumes about as much energy as it takes to run a 100-watt lightbulb for about a minute, and it takes just a couple minutes to charge the capacitor up,” says Bellan, the senior author of a new paper on solar flares that published on April 6 in Nature Astronomy [below]. Bellan captures each loop with a camera capable of taking 10 million frames per second, and he then studies the resulting images.

    Among the recent discoveries are that solar corona loops do not appear to be a single structure, but rather are composed of fractally braided strands akin to a large rope.

    “If you dissect a piece of rope, you see that it’s made up of braids of individual strands,” says Yang Zhang, graduate student and lead author of the Nature Astronomy paper [below]. “Pull those individual strands apart, and you’ll see that they’re braids of even smaller strands, and so on. Plasma loops appear to work the same way.”

    That structure, it turns out, is important to the generation of energetic particles and X-ray bursts associated with solar flares. Plasma is a strong electrical conductor—think of neon signs, which are filled with plasma and light up when electricity passes through. However, when too much current tries to pass through a solar corona loop, the structure is compromised. The loop develops a kink—a corkscrew-shaped instability—and individual strands start to break. Each new broken strand then dumps strain onto the remaining ones.

    “Like an elastic band stretched too tight, the loop gets longer and skinnier until the strands just snap,” says Seth Pree, postdoctoral scholar research associate in applied physics and materials science, and co-author of the Nature Astronomy paper.

    Studying the process microsecond by microsecond, the team noted a negative voltage spike associated with an X-ray burst at the exact instant a strand broke. This voltage spike is akin to the pressure drop that builds up at the point of constriction in a water pipe. The electric field from this voltage spike accelerates charged particles to extreme energy, then X-rays are emitted when the energetic particles decelerate.

    In addition, Zhang combed through pictures of solar flares and was able to document a kink instability similar to the one created in the lab that was associated with a subsequent X-ray burst.

    3
    Structural similarities between an actual solar flare (top) and one simulated in the Bellan lab (below). Credit: Bellan Lab.

    Next, the team plans to explore how separate plasma loops can merge and reorganize into different configurations. They are interested to learn if there are also energy burst events during this type of interaction.

    Nature Astronomy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The California Institute of Technology is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    The California Institute of Technology was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, The California Institute of Technology was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration ‘s Jet Propulsion Laboratory, which The California Institute of Technology continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    The California Institute of Technology has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at The California Institute of Technology. Although The California Institute of Technology has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The The California Institute of Technology Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with The California Institute of Technology, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with The California Institute of Technology. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute as well as National Aeronautics and Space Administration. According to a 2015 Pomona College study, The California Institute of Technology ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.

    Research

    The California Institute of Technology is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to The Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration; National Science Foundation; Department of Health and Human Services; Department of Defense, and Department of Energy.

    In 2005, The California Institute of Technology had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing NASA-JPL/Caltech , The California Institute of Technology also operates the Caltech Palomar Observatory; The Owens Valley Radio Observatory;the Caltech Submillimeter Observatory; the W. M. Keck Observatory at the Mauna Kea Observatory; the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Hanford, Washington; and Kerckhoff Marine Laboratory in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at The California Institute of Technology in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center, part of the Infrared Processing and Analysis Center located on The California Institute of Technology campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].


    The California Institute of Technology partnered with University of California-Los Angeles to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    The California Institute of Technology operates several Total Carbon Column Observing Network stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

     
  • richardmitnick 8:56 pm on March 23, 2023 Permalink | Reply
    Tags: "Doubling a qubit’s life researchers prove a key theory of quantum physics", , A long-sought-after goal and one of the trickiest challenges in the field of quantum physics., Applied Physics, , , Employing redundancy "quantum error correction" substantially extended the lifetime of a quantum bit., , The practical success of quantum computing will hinge on being able to create quantum bits of extremely high quality using quantum error correction., , The team achieved their results using an error-correction code that was invented in 2001.,   

    From The School of Engineering and Applied Science At Yale University: “Doubling a qubit’s life researchers prove a key theory of quantum physics” 

    Yale SEAS

    From The School of Engineering and Applied Science

    At

    Yale University

    3.22.23

    1
    Credit: Yale.

    Researchers at Yale have for the first time, using a process known as “quantum error correction”, substantially extended the lifetime of a quantum bit — a long-sought-after goal and one of the trickiest challenges in the field of quantum physics.

    Led by Yale’s Michael Devoret, the experiment proves — decades after its theoretical foundations were proposed — that quantum error correction works in practice. Quantum error correction is a process designed to keep quantum information intact for a period of time longer than if the same information were stored in hardware components without any correction.

    The results were published March 22 in Nature [below].

    Information in classical computing comes in the form of bits corresponding to ones or zeros. In quantum computing, information is stored in special devices with quantum properties that are known as quantum bits, or “qubits.” In the lab of Devoret, the Frederick W. Beinecke Professor of Applied Physics, these qubits are constructed with superconducting circuits cooled to temperatures 100 times lower than those in outer space. The qubits can each represent a one or a zero, or — confoundingly — both one and zero at the same time. This “quantum parallelism” is one of the properties that enables quantum computers to make calculations that will potentially be orders of magnitude faster than what is possible on classical supercomputers, and transform multiple industries.

    Quantum systems, though, are fragile. They are bedeviled by a fundamental phenomenon of decoherence, a process in which the information stored in qubits quickly loses its quantum properties as a result of their interactions with the surrounding environment.

    Quantum error correction, which was theoretically discovered in 1995, offers a means to combat this decoherence. Employing redundancy, it protects the quantum bit of information by encoding it in a system larger than what, in principle, is needed to represent a single qubit.

    This larger system, however, makes the effect of the surrounding environment even more invasive and the encoded qubit even more fragile. Because of this effect, and complications from the additional components required to perform error correction, this process had never been able to definitively extend the lifetime of a quantum bit in practice. In fact, just breaking even with an uncorrected qubit is a rare event, researchers say. Contrary to theoretical promises, in most experiments, error correction accelerates the decoherence of quantum information.

    “For the first time, we have shown that making the system more redundant and actively detecting and correcting quantum errors provided a gain in the resilience of quantum information,” Devoret said. “Our experiment shows that quantum error correction is a real practical tool. It’s more than just a proof-of-principle demonstration.”

    Devoret’s group has managed to more than double the lifetime of quantum information. Their error-corrected qubit lived for 1.8 milliseconds — things happen fast in the quantum realm.

    They achieved their results using an error-correction code that was invented in 2001. “It gives you a sense of the delay between the theoretical proposals and practical realization of them in our field,” Devoret said.

    Volodymyr Sivak, the lead author of the paper, said that this performance was achieved in part by employing a machine-learning agent that tweaked the error correction process to improve the outcome.

    “There is no single breakthrough that enabled this result,” said Sivak, a former Ph.D. student in Devoret’s lab and now a research scientist at Google. “It’s actually a combination of a whole bunch of different technologies that were developed in the past few years, which we combined in this experiment.”

    The practical success of quantum computing will hinge on being able to create quantum bits of extremely high quality using quantum error correction. “Our experiment validates a cornerstone assumption of quantum computing, and this makes me very excited about the future of this field,” said Sivak.

    Other authors of the paper (all affiliated or formerly affiliated with Yale) are Alec Eickbusch, Baptiste Royer, Shraddha Singh, Ioannis Tsioutsios, Suhas Ganjam, Alessandro Miano, Benjamin Brock, Andy Ding, Luigi Frunzio, Steven Girvin, and Robert Schoelkopf.

    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 11:45 am on March 8, 2023 Permalink | Reply
    Tags: "New 'Camera' with Shutter Speed of 1 Trillionth of a Second Sees through Dynamic Disorder of Atoms", "vsPDF": variable shutter PDF, Applied Mathematics, Applied Physics, , , New theory on stabilizing local fluctuations and converting waste heat to electricity, Speeding up a camera shutter a million million times enables researchers to understand how materials move heat around and is a major step in advancing sustainable energy applications., , Understanding dynamic disorder in materials could lead to more energy-efficient thermoelectric devices.   

    From The Fu Foundation School of Engineering and Applied Science At Columbia University: “New ‘Camera’ with Shutter Speed of 1 Trillionth of a Second Sees through Dynamic Disorder of Atoms” 

    From The Fu Foundation School of Engineering and Applied Science

    At

    Columbia U bloc

    Columbia University

    3.7.23
    Holly Evarts
    Director of Strategic Communications and Media Relations
    347-453-7408 (c)
    212-854-3206 (o)
    holly.evarts@columbia.edu

    Speeding up a camera shutter a million million times enables researchers to understand how materials move heat around and is a major step in advancing sustainable energy applications.

    1
    At slow shutter speeds, the atomic structure of GeTE looks ordered but blurred. Faster exposures reveal a clear intricate pattern of dynamic displacements. Credit: Jill Hemman/DOE ORNL.

    Researchers are coming to understand that the best performing materials in sustainable energy applications, such as converting sunlight or waste heat to electricity, often use collective fluctuations of clusters of atoms within a much larger structure. This process is often referred to as “dynamic disorder.”

    Dynamic disorder

    Understanding dynamic disorder in materials could lead to more energy-efficient thermoelectric devices, such as solid-state refrigerators and heat pumps, and also to better recovery of useful energy from waste heat, such as car exhausts and power station exhausts, by converting it directly to electricity. A thermoelectric device was able to take heat from radioactive plutonium and convert it to electricity to power the Mars Rover when there was not enough sunlight.

    When materials function inside an operating device, they can behave as if they are alive and dancing–parts of the material respond and change in amazing and unexpected ways. This dynamic disorder is difficult to study because the clusters are not only so small and disordered, but they also fluctuate in time. In addition, there is “boring” non-fluctuating disorder in materials that researchers aren’t interested in because the disorder doesn’t improve properties. Until now, it has been impossible to see the relevant dynamic disorder from the background of less relevant static disorder.

    New “camera” has incredibly fast shutter speed of around 1 picosecond


    Revealing Atomic Structures with a “Neutron” Camera. Credit: The DOE’s Oak Ridge National Laboratory.

    Researchers at Columbia Engineering and Université de Bourgogne report that they have developed a new kind of “camera” that can see the local disorder. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The new method, which they call variable shutter PDF or vsPDF (for atomic pair distribution function), doesn’t work like a conventional camera–it uses neutrons from a source at the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) to measure atomic positions with a shutter speed of around one picosecond, or a million million (a trillion) times faster than normal camera shutters. The study was published February 20, 2023, by Nature Materials [below].

    “It’s only with this new vsPDF tool that we can really see this side of materials,” said Simon Billinge, professor of materials science and applied physics and applied mathematics. “It gives us a whole new way to untangle the complexities of what is going on in complex materials, hidden effects that can supercharge their properties. With this technique, we’ll be able to watch a material and see which atoms are in the dance and which are sitting it out.”

    New theory on stabilizing local fluctuations and converting waste heat to electricity

    The vsPDF tool enabled the researchers to find atomic symmetries being broken in GeTe, an important material for thermoelectricity that converts waste heat to electricity (or electricity into cooling). They hadn’t previously been able to see the displacements, or to show the dynamic fluctuations and how quickly they fluctuated. As a result of the insights from vsPDF, the team developed a new theory that shows just how such local fluctuations can form in GeTe and related materials. Such a mechanistic understanding of the dance will help researchers to look for new materials with these effects and to apply external forces to influence the effect, leading to even better materials.

    Research team

    Billlinge’s co-lead on this work with Simon Kimber, who was at the University of Bourgogne in France at the time of the study. Billinge and Kimber worked with colleagues at the DOE’s Oak Ridge National Laboratory and the DOE’s Argonne National Laboratory. The Inelastic neutron scattering measurements for the vsPDF camera were made at ORNL; the theory was done at ANL.

    Next steps

    Billinge is now working on making his technique easier to use for the research community and applying it to other systems with dynamic disorder. At the moment, the technique is not turn-key, but with further development, it should become a much more standard measurement that could be used on many material systems where atomic dynamics are important, from watching lithium moving around in battery electrodes to studying dynamic processes during water-splitting with sunlight.

    Nature Materials

    Fig. 1: Local distortion in GeTe and fits to X-ray PDFs in the R3m and Fm-3m phases.
    2
    a, Electronic structure of IV–VI materials consists of orthogonal one-dimensional bands made up of valence p orbitals. These are susceptible to Peierls distortions, resolved in GeTe by a shift in the Ge sublattice. b, Apparent disorder in c-GeTe; note the splitting of the purple Ge sites. c, Fit to the room-temperature PDF of GeTe using the R3m structure (goodness-of-fit Rw = 0.087) (top). Peaks corresponding to several important distances are highlighted. The best fit of our split-site model for c-GeTe at 825 K (Rw = 0.104) (bottom).

    Fig. 2: Instantaneous and time-averaged neutron scattering results for c-GeTe at 720 K using 300 meV neutrons.
    3
    a, Instantaneous (total) PDF fitted with the average rock-salt c-GeTe structure. Obvious peak splittings and sharpening are found at low r. The first coordination shell splitting is shown in the inset, and the purely inelastic PDF extracted by the PCA analysis is shown to replicate the misfits between the average and instantaneous structures. The asterisk highlights the c peak. b, Elastic PDF extracted using the PCA analysis, also showing a fit to the average NaCl structure. The peak splitting of the first coordination shell and c sharpening are completely absent. The asterisk highlights the c peak. c, Structure factors, Q × [S(Q) – 1], determined for the total (instantaneous) and elastic (time-averaged) scattering of GeTe at 720 K using ARCS. A significant extra oscillation is present in the total integrated structure factor, showing that the 2.88 Å real-space splitting is dynamic.

    For further illustrations see the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Columbia University Fu Foundation School of Engineering and Applied Science is the engineering and applied science school of Columbia University. It was founded as the School of Mines in 1863 and then the School of Mines, Engineering and Chemistry before becoming the School of Engineering and Applied Science. On October 1, 1997, the school was renamed in honor of Chinese businessman Z.Y. Fu, who had donated $26 million to the school.

    The Fu Foundation School of Engineering and Applied Science maintains a close research tie with other institutions including National Aeronautics and Space Administration, IBM, Massachusetts Institute of Technology, and The Earth Institute. Patents owned by the school generate over $100 million annually for the university. Faculty and alumni are responsible for technological achievements including the developments of FM radio and the maser.

    The School’s applied mathematics, biomedical engineering, computer science and the financial engineering program in operations research are very famous and ranked high. The current faculty include 27 members of the National Academy of Engineering and one Nobel laureate. In all, the faculty and alumni of Columbia Engineering have won 10 Nobel Prizes in physics, chemistry, medicine, and economics.

    The school consists of approximately 300 undergraduates in each graduating class and maintains close links with its undergraduate liberal arts sister school Columbia College which shares housing with SEAS students.

    Original charter of 1754

    Included in the original charter for Columbia College was the direction to teach “the arts of Number and Measuring, of Surveying and Navigation […] the knowledge of […] various kinds of Meteors, Stones, Mines and Minerals, Plants and Animals, and everything useful for the Comfort, the Convenience and Elegance of Life.” Engineering has always been a part of Columbia, even before the establishment of any separate school of engineering.

    An early and influential graduate from the school was John Stevens, Class of 1768. Instrumental in the establishment of U.S. patent law. Stevens procured many patents in early steamboat technology; operated the first steam ferry between New York and New Jersey; received the first railroad charter in the U.S.; built a pioneer locomotive; and amassed a fortune, which allowed his sons to found the Stevens Institute of Technology.

    When Columbia University first resided on Wall Street, engineering did not have a school under the Columbia umbrella. After Columbia outgrew its space on Wall Street, it relocated to what is now Midtown Manhattan in 1857. Then President Barnard and the Trustees of the University, with the urging of Professor Thomas Egleston and General Vinton, approved the School of Mines in 1863. The intention was to establish a School of Mines and Metallurgy with a three-year program open to professionally motivated students with or without prior undergraduate training. It was officially founded in 1864 under the leadership of its first dean, Columbia professor Charles F. Chandler, and specialized in mining and mineralogical engineering. An example of work from a student at the School of Mines was William Barclay Parsons, Class of 1882. He was an engineer on the Chinese railway and the Cape Cod and Panama Canals. Most importantly he worked for New York, as a chief engineer of the city’s first subway system, the Interborough Rapid Transit Company. Opened in 1904, the subway’s electric cars took passengers from City Hall to Brooklyn, the Bronx, and the newly renamed and relocated Columbia University in Morningside Heights, its present location on the Upper West Side of Manhattan.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 9:17 am on February 6, 2023 Permalink | Reply
    Tags: "Building Off the 'Anti-laser' a Device That Directs Waves", Applied Physics, , , , ,   

    From The School of Engineering and Applied Science At Yale University: “Building Off the ‘Anti-laser’ a Device That Directs Waves” 

    Yale SEAS

    From The School of Engineering and Applied Science

    At

    Yale University

    1.25.23

    Building off a breakthrough “anti-laser,” a team of researchers has developed a system that can direct light and other electromagnetic waves for signal processing without any unwanted signal reflections – an innovation that could advance local area networks, the field of photonics, and other applications.

    1
    Credit: Yale SEAS.

    The results, led by A. Douglas Stone of Yale and Philipp del Hougne of University of Rennes in France, are published in Science Advances [below].

    1
    Fig. 1. RSM concept and experimental setup in a metasurface-programmable overmoded lossy scattering system.
    (A) Generic schematic of a nonunitary scattering system with four attached channels and matrix formalism corresponding to an RSM involving channels 1 and 2 (highlighted in green). (B) Photographic image of the corresponding experimental setup comprising a metallic electrically large scattering enclosure with irregularly shaped metallic scattering structures (top cover removed to show interior), two programmable metasurfaces composed of 152 meta-atoms each, and four waveguide-to-coax adapters to couple four monomodal channels to the system. The inset shows the front view of a waveguide-to-coax adapter.

    2
    Fig. 2. Experimental observation of RSMs without and with frequency constraint.
    (A) Number of RSMs found across 104 random metasurface configurations and 1601 frequency points between 4.9 and 5.6 GHz. Black triangles indicate counts for specific indicated choices of Nin input ports; blue dots and error bars represent the average and SD across all possible choices. The labels indicate the chosen Nin injection channels. (B) Numerically determined mean and SD of the distributions of the imaginary components of zeros and poles (color coded for various choices of Nin and Nout) as a function of the ratio of absorption coupling to radiative coupling. The distributions are obtained for the cavity depicted in the inset (the color map shows the real part of an arbitrary eigenmode) within a certain frequency interval (see note S5). The black dashed line indicates the highest imaginary component for Nin = 3 found in the interval. (C) Reflected signal power PR upon excitation through channels 1 and 2 for a random metasurface configuration (blue), for the RSM closest to 5.2 GHz out of the data from (A) (purple), and for a metasurface configuration optimized for 5.2 GHz. The dashed and dotted lines present the powers PT3 and PT4 transmitted into channels 3 and 4, respectively. The insets show the sensitivity of the RSM optimized with frequency constraint to detuning of the relative phase (left, detuned by Δϕ) or relative amplitude (right, detuned by a multiplicative scaling factor) of the two RSM wavefront ΨRSM entries. (D) Optimization dynamics of the frequency-constrained RSM from (C): First, 100 random metasurface configurations are tested; second, the best configuration is iteratively optimized further. (E) The two-channel input wavefronts corresponding to the curves in (C) are visualized in terms of the relative phase and amplitude difference using the same color codes as in (C).

    3
    Fig. 3. Reflectionless wavelength demultiplexer.
    (A) Schematic of targeted wavelength demultiplexing functionality. (B) Schematic drawing of experimental setup for VNA measurements and in situ observation. (C to E) VNA measurements of the scattering parameters of the optimized system. (F to H) In situ measurements of the optimized system. CW signals at f1 and f2 are summed and injected through channel 1 [see (B)]. The power exiting the system through all three channels is measured and plotted in dark green. In addition, a calibration measurement to characterize losses in the cables of the measurement setup [see (B)] is shown in light green. The difference between the two curves corresponds to the in situ observed performance: reflection of at most −59 dB, undesired transmission of at most −60 dB, desired transmission of at least −20 dB, and, hence, transmission discrimination of 40 dB.

    4
    Fig. 4. Reprogrammability of reflectionless signal routing frequencies and functionality.
    (A) In situ observations of four instances of reprogramming in situ the wavelength demultiplexing frequencies by reconfiguring the programmable metasurface are shown. The first instance is that from Fig. 3. The corresponding metasurface configurations are indicated; the color code identified in the legend encodes the 1-bit programmable configuration of the meta-atom with respect to the two orthogonal field polarizations. (B) In situ observations of a different signal routing functionality by reprogramming the metasurface configuration. Here, f2 is injected via the channel through which f1 is supposed to exit, and f2 is desired to exit through the remaining third channel. Again, four instances for different choices of f1 and f2 are shown.

    A little more than a decade ago, Stone led a team in the creation of the anti-laser, or “coherent perfect absorber” (CPA). Instead of emitting a beam as a laser does, an anti-laser absorbs input light with the same precision.

    In a laser, light bounces back and forth between two mirrors, each time passing through an amplifying material – known as the “gain medium” – such as gallium arsenide. Because the light is of a specific wavelength, it creates a feedback that increasingly gains in intensity. In a typical light source – an everyday light bulb, for instance – atoms radiate independently and create light of many different wavelengths, and light goes in many directions as a result. In lasers, though, atoms radiate at the same frequency and in the same direction, creating a concentrated beam of a single wavelength.

    The difference in the anti-laser is that instead of using an amplifying material, it uses one that absorbs the light – that is, a “loss medium.” In its simplest version, the anti-laser splits a single laser beam into two and directs the two beams into each other, meeting at a paper-thin silicon wafer. The light’s waves are precisely tuned to interlock with each other and become trapped. They then dissipate into heat.

    For their most recent work, the researchers built off this concept and developed a device based on what they call “reflectionless scattering modes” (RSMs).

    “We asked if there is some principle like this where we can guide light instead of transducing it into another form of energy,” said Stone, the Carl A. Morse Professor of Applied Physics and Physics. “Because with optical fibers and modern photonic circuits, guiding light and not having any of it reflect back is extremely valuable.”

    From there, they developed the device that, instead of absorbing the waves, redirected them to specific channels. Stone worked on the theoretical side of the project, while Philipp del Hougne of University of Rennes in France built the actual device.

    “Instead of having it all transduced, it could either all go into our chosen output channels or some of it could be absorbed and the rest go into the output channels,” Stone said. “In the next step, we want to make a similar device where the absorption is negligible, so that all of the energy is efficiently routed to perform its information or sensing function. There is great interest in such technologies to reduce the power consumption of cell phone networks, for example.”

    The device eliminated signal reflections, which have long been a problem for signal routers, a pivotal ingredient of modern nanophotonic and radio frequency networks. Besides causing a loss in signal power, such reflections can cause devastating unwanted reflected-signal-power echoes in the network.

    The study’s other authors are Ali Alhulaymi, Ph.D. student at Yale, and Jérôme Sol of University of Rennes.

    Science Advances

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 9:02 pm on January 5, 2023 Permalink | Reply
    Tags: "A Better Photon Detector to Advance Quantum Technology", "PNR": photon-number-resolving detector, Applied Physics, , , , , Photon-number-resolving (PNR) detectors are considered the most desired technology for measuring light., Photonic quantum computing, , , , ,   

    From The School of Engineering and Applied Science At Yale University: “A Better Photon Detector to Advance Quantum Technology” 

    Yale SEAS

    From The School of Engineering and Applied Science

    at

    Yale University

    1.3.23

    1
    Credit: Yale University.

    A team of researchers has developed an on-chip photon-counting device that could significantly advance numerous applications of quantum technology.

    The laboratory of Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics, has developed the first realization of an on-chip photon-number-resolving (PNR) detector that can resolve up to 100 photons at a time. This detector shows its power in resolving the photon statistics of a light pulse. The results are published in Nature Photonics [below].

    Photon-number-resolving (PNR) detectors are considered the most desired technology for measuring light. With very high sensitivity, they can resolve the number of photons even in an extremely weak light pulse. They’re essential to a vast range of quantum applications, including quantum computing, quantum cryptography and remote sensing. However, current photon counting devices are limited in how many photons they can detect at once – usually only one at a time, and not more than 10.  

    “The problem is that if you have more than one, the detector will be saturated, so you cannot tell how many photons you have,” said co-lead author Yiyu Zhou, a postdoctoral associate in Tang’s lab.

    The device from the Tang group, though, not only advances PNR capability by up to 100, but also improves by three orders of magnitude on the counting rate. It also operates at an easily accessible temperature. 

    Because of this, the device allows for a broader range of applications, Tang said, “especially in lots of fast-emerging quantum applications, such as large-scale Boson sampling, photonic quantum computing, and quantum metrology.” 

    The complexity of the device required years of design and fabrication, and then also to verify its performance. 

    To build on their work, the researchers plan to make the device smaller and increase the number of photons it can detect. That could include using different dielectric material to boost its photon number resolution to more than 1,000.  

    Further, they want to integrate the detector with on-chip quantum light sources. Conventional detectors are designed to be interfaced with an optical fiber, which can lead to signal loss.  

    “If we can integrate everything together, we would have lower loss, and a higher fidelity of measurement,” said Risheng Cheng, a former postdoctoral associate in Tang’s lab and currently a research scientist at Meta.

    The study’s other authors are Sihao Wang, Mohan Shen, and Towsif Taher. 

    2
    Credit: Yale University.

    Science paper:
    Nature Photonics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: