Tagged: APOGEE Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:58 pm on March 29, 2017 Permalink | Reply
    Tags: APOGEE, , , , , ,   

    From SDSS: “Seeing the whole galaxy with a “second eye on the sky”” Press Release 

    SDSS Telescope

    Sloan Digital Sky Survey

    March 29, 2017

    Earlier this month, the Sloan Digital Sky Survey (SDSS) reached an important milestone by opening its “second eye on the sky” – a new instrument called the “APOGEE South spectrograph.”

    1
    UVA APOGEE-South Team Installs Spectrograph | Department of Astronomy, U.Va

    This new instrument at Las Campanas Observatory in Chile is the twin of the APOGEE North spectrograph, and will let astronomers study stars across the whole Milky Way like never before.


    Carnegie Las Campanas Observaory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena

    The name APOGEE is short for the Apache Point Observatory Galaxy Evolution Experiment, based on the location of the experiment’s first “eye” at Apache Point Observatory, New Mexico.


    Apache Point Observatory,Apache Point Observatory, NM, USA

    “The original APOGEE made history by measuring extremely detailed properties of more stars than ever before,” said Steven Majewski of the University of Virginia, Principal Investigator of the APOGEE experiment. “But we always wanted a more complete view, especially because the center of the Galaxy is best seen from the Southern Hemisphere. With the APOGEE South spectrograph, we are finally realizing that vision.” Data collected by the twin instruments will help astronomers make a map of the entire Milky Way, with an unprecedented combination of size and detail.

    2
    The “first light” observations for the APOGEE South spectrograph. The dots show stars whose spectra were observed by APOGEE. Some example spectra are shown (colors are representative only, as APOGEE spectra are in the infrared).

    The first light observations included spectra of supermassive stars in the Tarantula Nebula. This nebula in the Large Magellanic Cloud is forming stars more rapidly than any other region in our Local Group of galaxies. It can only be seen from the Southern Hemisphere, underscoring the importance of APOGEE South’s location. The spectrograph will allow us to study the chemistry and evolution of the stars in the nebula in greater detail than ever before. Image Credit: SDSS collaboration; Tarantula Nebula image from ESA/Herschel and NASA/Spitzer.

    The APOGEE South spectrograph in Chile is identical to the original APOGEE spectrograph in New Mexico. Both work by spreading starlight into detailed rainbow patterns called “spectra.” Astronomers use these spectra to determine the chemical compositions of those stars, and also to find subtle shifts due to the Doppler Effect created by the stars’ motion through space. These pieces of information – composition and velocity – are combined with the known stellar positions to create an incredibly detailed map of our Galaxy.

    5
    Three instrument team members work on the APOGEE South instrument, before the top was closed. It was then cooled down and placed under vacuum ready for observing. Left to right: Garrett Ebelke, Matt Hall, and Mita Tembe (all from the University of Virginia). Image Credit: John Wilson (University of Virginia)

    John Wilson of the University of Virginia, APOGEE’s Instrument Scientist, explains the decision to build identical instruments in two hemispheres: “If the two spectrographs are exactly the same, then the spectra we collect from them will also be the same. We don’t need to worry that differences we see are due to differences in instrument design. We can directly compare the parts of our Galaxy we can see from the Northern and Southern Hemispheres.”

    The APOGEE experiment to date has measured more than one million spectra of 277,000 individual stars, making it the largest high-resolution, near-infrared spectroscopic sample of stars ever observed. By working in infrared light, the APOGEE instruments can peer through the thick clouds of dust that obscure the inner Milky Way. By the end of APOGEE South’s mission, the number of stars observed will double, resulting in the most complete map of the Milky Way ever created.

    7
    With the installation of the APOGEE South spectrograph on the du Pont telescope at Las Campanas Observatory in Chile, the SDSS can now view the whole night sky from both Northern and Southern Hemispheres. This new view gives us an unprecedented, homogeneous, and complete view of the entire Milky Way Galaxy, as well as its satellites the Large and Small Magellanic Clouds (shown just below the Milky Way in this image). The Tarantula Nebula, where APOGEE South took its first data, is visible as a bright pink spot in the Large Magellanic Cloud. Image Credit: Dana Berry/SkyWorks Digital Inc.; SDSS collaboration

    The new APOGEE South spectrograph is located at the Irénée du Pont Telescope at Las Campanas Observatory, located at an elevation of 2,400 meters (8,000 feet) in the Atacama Desert of Northern Chile — about the same distance south of the equator as the New Mexico site of the original APOGEE spectrograph is to the north.


    Carnegie Las Campanas Dupont telescope, Atacama Desert, approximately 100 kilometres (62 mi) northeast of the city of La Serena,Chile

    “Looking from the Southern Hemisphere will allow us to study the innermost regions of our Galaxy,” said Manuela Zoccali of Pontifica Universidad Católica de Chile and the Millennium Institute of Astrophysics, the chair of the SDSS Chilean Participation Group. “This is the first time that a large team of Chileans has worked with colleagues around the world on such an ambitious project. We are pleased we can now work together on the first data.”

    The director of the SDSS-IV project, Michael Blanton of New York University, agrees. “Working with our colleagues in Chile has helped us extend our survey in exciting new ways. Ever since we began in 2000, people have asked us when we would go to the Southern Hemisphere. We are delighted to have found a second home at Las Campanas.”

    About the Sloan Digital Sky Survey

    Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is http://www.sdss.org.

    SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
    About the Chilean Participation Group of SDSS-IV

    The infrastructure for the APOGEE South instrument has been developed and will be operated in a partnership with seven universities in Chile: Pontificia Universidad Católica, Universidad Andres Bello, Universidad de Antofagasta, Universidad de Chile, Universidad de Concepción, Universidad de La Serena, and Universidad de Valparaíso.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects. Learn and explore all phases and surveys—past, present, and future—of the SDSS.

    The SDSS began regular survey operations in 2000, after a decade of design and construction. It has progressed through several phases, SDSS-I (2000-2005), SDSS-II (2005-2008), SDSS-III (2008-2014), and SDSS-IV (2014-). Each of these phases has involved multiple surveys with interlocking science goals. The three surveys that comprise SDSS-IV are eBOSS, APOGEE-2, and MaNGA, described at the links below. You can find more about the surveys of SDSS I-III by following the Prior Surveys link.

    Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS- IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is http://www.sdss.org.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

     
  • richardmitnick 5:21 pm on March 22, 2017 Permalink | Reply
    Tags: , APOGEE, , , , , , Dark Energy Spectroscopic Instrument (DESI), , , New Study Maps Space Dust in 3-D, ,   

    From LBNL: “New Study Maps Space Dust in 3-D” 

    Berkeley Logo

    Berkeley Lab

    March 22, 2017
    Glenn Roberts Jr
    geroberts@lbl.gov
    510-486-5582


    Access mp4 video here .
    This animation shows a 3-D rendering of space dust, as viewed in a several-kiloparsec (thousands of light years) loop through and out of the Milky Way’s galactic plane. The animation uses data for hundreds of millions of stars from Pan-STARRS1 and 2MASS surveys, and is made available through a Creative Commons License. (Credit: Gregory M. Green/SLAC, KIPAC)

    Consider that the Earth is just a giant cosmic dust bunny—a big bundle of debris amassed from exploded stars. We Earthlings are essentially just little clumps of stardust, too, albeit with very complex chemistry.

    And because outer space is a very dusty place, that makes things very difficult for astronomers and astrophysicists who are trying to peer farther across the universe or deep into the center of our own galaxy to learn more about their structure, formation and evolution.

    Building a better dust map

    Now, a new study led by Edward F. Schlafly, a Hubble Fellow in the Physics Division at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), is providing a detailed, 3-D look at dust on a scale spanning thousands of light-years in our Milky Way galaxy. The study was published today in The Astrophysical Journal.

    This dust map is of critical importance for the Dark Energy Spectroscopic Instrument (DESI), a Berkeley Lab-led project that will measure the universe’s accelerating expansion rate when it starts up in 2019. DESI will build a map of more than 30 million distant galaxies, but that map will be distorted if this dust is ignored.

    “The light from those distant galaxies travels for billions of years before we see it,” according to Schlafly, “but in the last thousand years of its journey toward us a few percent of that light is absorbed and scattered by dust in our own galaxy. We need to correct for that.”

    Just as airborne dust in Earth’s sky contributes to the atmospheric haze that gives us brilliant oranges and reds in sunrises and sunsets, dust can also make distant galaxies and other space objects appear redder in the sky, distorting their distance and in some cases concealing them from view.

    Scientists are constantly developing better ways to map out this interstellar dust and understand its concentration, composition, and common particle sizes and shapes.

    1
    The dark regions show very dense dust clouds. The red stars tend to be reddened by dust, while the blue stars are in front of the dust clouds. These images are part of a survey of the southern galactic plane. (Credit: Legacy Survey/NOAO, AURA, NSF)

    Once we can solve the dust problem by creating better dust maps and learning new details about the properties of this space dust, this can give us a much more precise gauge of distances to faraway stars in the Milky Way, like a galactic GPS. Dust maps can also help to better gauge the distance to supernovae events by taking into account the effects of dust in reddening their light.

    “The overarching aim of this project is to map dust in three dimensions—to find out how much dust is in any 3-D region in the sky and in the Milky Way galaxy,” Schlafly said.

    Combined data from sky surveys shed new light on dust

    Taking data from separate sky surveys conducted with telescopes on Maui and in New Mexico, Schlafly’s research team composed maps that compare dust within one kiloparsec, or 3,262 light-years, in the outer Milky Way—including collections of gas and dust known as molecular clouds that can contain dense star- and planet-forming regions known as nebulae—with more distant dust in the galaxy.

    2
    Pan-STARRS2 and PanSTARS1 telescopes atop Haleakalā on the island of Maui, Hawaii. (Credit: Pan-STARRS)

    The resolution of these 3-D dust maps is many times better than anything that previously existed,” said Schlafly.

    This undertaking was made possible by the combination of a very detailed multiyear survey known as Pan-STARRS that is powered by a 1.4-gigapixel digital camera and covers three-fourths of the visible sky, and a separate survey called APOGEE that used a technique known as infrared spectroscopy.

    3
    A compressed view of the entire sky visible from Hawaii by the Pan-STARRS1 Observatory. The image is a compilation of half a million exposures, each about 45 seconds in length, taken over a period of four years. The disk of the Milky Way looks like a yellow arc, and the dust lanes show up as reddish-brown filaments. The background is made up of billions of faint stars and galaxies. (Credit: D. Farrow/Pan-STARRS1 Science Consortium, and Max Planck Institute for Extraterrestrial Physics)

    Infrared measurements can effectively cut through the dust that obscures many other types of observations and provides a more precise measurement of stars’ natural color. The APOGEE experiment focused on the light from about 100,000 red giant stars across the Milky Way, including those in its central halo.


    SDSS Telescope at Apache Point Observatory, NM, USA

    What they found is a more complex picture of dust than earlier research and models had suggested. The dust properties within 1 kiloparsec of the sun, which scientists measure with a light-obscuring property known as its “extinction curve,” is different than that of the dust properties in the more remote galactic plane and outer galaxy.

    New questions emerge on the makeup of space dust

    The results, researchers found, appear to be in conflict with models that expect dust to be more predictably distributed, and to simply exhibit larger grain sizes in areas where more dust resides. But the observations find that the dust properties vary little with the amount of dust, so the models may need to be adjusted to account for a different chemical makeup, for example.

    “In denser regions, it was thought that dust grains will conglomerate, so you have more big grains and fewer small grains,” Schlafly said. But the observations show that dense dust clouds look much the same as less concentrated dust clouds, so that variations in dust properties are not just a product of dust density: “whatever is driving this is not just conglomeration in these regions.”

    He added, “The message to me that we don’t yet know what’s going on. I don’t think the existing (models) are correct, or they are only right at the very highest densities.”

    Accurate measures of the chemical makeup of space dust are important, Schlafly said. “A large amount of chemistry takes place on dust grains, and you can only form molecular hydrogen on the surface of dust grains,” he said—this molecular hydrogen is essential in the formation of stars and planets.


    Access mp4 video here .
    This animation shows a 3-D rendering of dust, as viewed from a 50-parsec (163-light-year) loop around the sun. The animation uses data for hundreds of millions of stars from Pan-STARRS1 and 2MASS surveys, and is made available through a Creative Commons License: https://creativecommons.org/licenses/by-sa/4.0/. (Credit: Gregory M. Green/SLAC, KIPAC)

    Even with a growing collection of dust data, we still have an incomplete dust map of our galaxy. “There is about one-third of the galaxy that’s missing,” Schlafly said, “and we’re working right now on imaging this ‘missing third’ of the galaxy.” A sky survey that will complete the imaging of the southern galactic plane and provide this missing data should wrap up in May, he said.

    APOGEE-2, a follow-up survey to APOGEE, for example, will provide more complete maps of the dust in the local galaxy, and other instruments are expected to provide better dust maps for nearby galaxies, too.

    While the density of dust shrouds our view of the center of the Milky Way, Schlafly said there will be progress, too, in seeing deeper and collecting better dust measurements there as well.

    Researchers at the Harvard-Smithsonian Center for Astrophysics and Harvard University also participated in this work.

    4
    The planned APOGEE-2 survey area overlain on an image of the Milky Way. Each dot shows a position where APOGEE-2 will obtain stellar spectra. (Credit: APOGEE-2)

    APOGEE is a part of the Sloan Digital Sky Survey III (SDSS-III), with participating institutions including Berkeley Lab, the Alfred P. Sloan Foundation, and the National Science Foundation. PanSTARRS1 surveys are supported by the University of Hawaii Institute for Astronomy; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes in Germany; the Johns Hopkins University; the University of Durham, the University of Edinburgh, and the Queen’s University Belfast in the U.K.; the Harvard-Smithsonian Center for Astrophysics; the Las Cumbres Observatory Global Telescope Network Inc.; and the National Central University of Taiwan. Pan-STARRS is supported by the U.S. Air Force.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 8:19 pm on March 31, 2016 Permalink | Reply
    Tags: APOGEE, , , ,   

    From SDSS: “An Oasis in the Brown Dwarf Desert – Astronomers Surprised, Relieved” 

    SDSS Telescope

    Sloan Digital Sky Survey

    March 31, 2016
    Jordan Raddick

    A new paper published this month in The Astronomical Journal by astronomers from the Sloan Digital Sky Survey (SDSS) reports a wellspring of new brown dwarf stellar companions, throwing cold water on the entire idea of the “brown dwarf desert,” the previously mystifying lack of these sub-stellar objects around stars.

    Artist's concept of a Brown dwarf [not quite a] star. NASA/JPL-Caltech
    Artist’s concept of a Brown dwarf [not quite a] star. NASA/JPL-Caltech

    Most stars in our Galaxy have a traveling companion. Often, these companions are stars of similar mass, as is the case for our nearest stellar neighbors, the triple star system Alpha Centauri.

    Centauris Alpha Beta Proxima 27 February 2012 Skatebiker
    Centauris Alpha Beta Proxima, 27 February 2012 Skatebiker

    1
    2
    The “before” and “after” comparison of the number of known brown dwarfs orbiting other stars.

    For each of the 41 close-in brown dwarf companions detected previously, the left panel shows the distance to its host star. The right panel shows the 112 brown dwarfs discovered in the new study.

    In both panels, the sizes of the brown dwarfs indicate their masses, and the circle shows the distance to Earth’s orbit. The larger dot (yellow or red) in the center of each panel represents the host star (not to scale). All the companions were discovered in different systems; they are shown together for comparison only.

    Our Sun, of course, has companions of its own – the planets of our Solar System. Planetary companions are vastly different from stellar companions: they are much smaller, and they do not shine with their own light created through nuclear fusion. Even the largest planet in our Solar System, Jupiter, would need to be 80 times more massive to even begin to shine this way.

    Stuck in the middle are “brown dwarfs,” much bigger than Jupiter but still too small to be shining stars. These brown dwarfs give off merely a dim glow as they slowly cool. The Universe is full of stars, and now we know that it is full of planets too. Astronomers expected that the Universe would also be teeming with brown dwarfs.

    But strangely, that’s not what they had been finding. Although astronomers have found plenty of brown dwarfs floating through space on their own, they found very few as stellar companions. Even in recent years, as new and sensitive detection techniques have allowed them to discover thousands of extrasolar planets, brown dwarfs have remained elusive – in spite of the fact that they should be easier to find than planets.

    In fact, until recently, so few brown dwarfs have been found orbiting close to other stars that astronomers refer to the phenomenon as the “brown dwarf desert.” This in turn created a problem for theorists, who have been scrambling to explain why astronomers have found so few. Therefore when SDSS astronomers started sifting through their data looking for brown dwarf companions to stars, they were hoping not to come up completely dry.

    “We were shocked to find that so many of the stars in our sample have close-orbiting brown dwarf companions,” says Nick Troup of the University of Virginia, lead author of the paper. “We never expected to triple the total number of known brown dwarf companions with only a few years’ worth of observations.”

    The team’s success is due to an unlikely tool in the race to find low-mass stellar companions. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) was designed as a substantial survey of stars in our Milky Way to make a large-scale map of their motions and chemical compositions. But the instrument built for the APOGEE project is so sensitive to small stellar motions that companions orbiting these stars can be detected with APOGEE data.

    SDSS APOGEE spectrograph
    SDSS APOGEE spectrograph

    When an object orbits a star, it [gravitationally] tugs at it, causing the star to move on a little orbit of its own. For example, Jupiter tugs on the Sun enough to make it wobble around in space by more than its own diameter. To a distant observer, this wobble can be detected — and the mass of the tugging object can be determined — through changes in the motion of the star. This motion is seen through the Doppler effect, the same phenomenon that is the basis of the patrol officer’s speed gun and the meteorologist’s Doppler radar rain map. While APOGEE was designed to measure the grand motions of stars speeding around the Galaxy, it was never intended to do so at the subtle precisions needed to detect the much tinier wobbles induced by small sub-stellar companions.

    “This level of precision was a serendipitous bonus of the design of the APOGEE spectrograph”, says John Wilson, University of Virginia astronomer and leader of the APOGEE instrument team. “The entire instrument has to be contained in a giant steel vessel in a vacuum at –320 degrees F, otherwise the instrument’s own heat would swamp the infrared signals from the stars.” It turns out that this tightly controlled environment makes it possible to use the APOGEE instrument to measure Doppler shifts reliably over the course of months or years, a feat not achievable by many other spectrographs.

    “Even with the first data obtained a few years ago, it was clear that we could use APOGEE to detect the motions of planet-sized objects around our target stars,” says David Nidever of the University of Arizona and the Large Synoptic Survey Telescope, who was responsible for writing much of the software that measures the Doppler motions in APOGEE spectra. “It definitely opened our eyes to the possibilities of doing a more systematic search for planets and brown dwarfs.”

    To undertake such a search, the team started with the 150,000 stars that APOGEE had observed. The astronomers winnowed that collection of stars down to a “prime sample” of about four hundred representing the best examples of stars with companions in the APOGEE data. Among these, they identified about 60 stars with evidence for planetary-mass candidates, which was already exciting. But the real surprise came with the researchers’ extraordinary haul of 112 brown dwarf candidates – twice as many than had been found in the previous 15 years.

    Why has the APOGEE team been so lucky in finding this oasis of brown dwarfs? Troup thinks it may have to do with the types of host stars that they are looking at. “Most people doing planet searches have been interested in finding the next Earth, so they’ve focused their efforts on stars similar to the Sun,” Troup says. “But we had to work with the stars that APOGEE surveyed, which are mostly giant stars.”

    The reasons why brown dwarf companions are more common around giant stars is just one of many new questions raised by this new study that the Sloan team is investigating. And the team will continue to test their results with the ever-growing flow of APOGEE data.

    “It’s completely unprecedented that this many brown dwarf companions have been found at once, so we are anxious to see if the trend persists as the APOGEE sample grows to several times larger,” Troup said.

    But for now, it looks like the brown dwarf desert might be a mirage after all.

    Companions to APOGEE stars. I. A Milky Way-spanning catalog of stellar and substellar companion candidates and their diverse hosts.” Astronomical Journal, 151(3), 85-109, doi:10.3847/0004-6256/151/3/85, arxiv.org/abs/1601.00688.

    The science team:
    Nicholas W. Troup1a, David L. Nidever2,3,24, Nathan De Lee4,5, Joleen Carlberg6, Steven R. Majewski1, Martin
    Fernandez7, Kevin Covey7, S. Drew Chojnowski8, Joshua Pepper9, Duy T. Nguyen1, Keivan Stassun4, Duy
    Cuong Nguyen10, John P. Wisniewski11, Scott W. Fleming12,13, Dmitry Bizyaev14,15, Peter M. Frinchaboy23, D.
    A. Garca-Hernandez20,21, Jian Ge16, Fred Hearty17,18, Szabolcs Meszaros19, Kaike Pan14, Carlos Allende
    Prieto20,21, Donald P. Schneider17,18, Matthew D. Shetrone22, Michael F. Skrutskie1, John Wilson1, Olga
    Zamora20,21

    Affiliations:

    1 Department of Astronomy, University of Virginia, Charlottesville,
    VA 22904-4325, USA Anwt2de@virginia.edu
    2 University of Michigan, 1085 S University Ave, Ann Arbor,
    MI 48109, USA
    3 Large Synoptic Survey Telescope, 950 North Cherry Ave,
    Tuscon, AZ 85719, USA
    4 Department of Physics, Geology, and Engineering Tech,
    Northern Kentucky University, Highland Heights, KY 41099,
    USA
    5 Department of Physics and Astronomy, Vanderbilt University,
    Nashville, TN, USA
    6 NASA Goddard Space
    ight Center, Greenbelt, MD, USA
    7 Western Washington University, Bellingham, WA 98225,
    USA
    8 New Mexico State University, Las Cruces, NM, USA
    9 Lehigh University, Bethlehem, PA, USA
    10 University of Toronto, Toronto, Ontario, Canada
    11 University of Oklahoma, Norman, OK, USA
    12 Space Telescope Science Institute, Baltimore, MD, USA
    13 Computer Sciences Corporation, Baltimore, MD, USA
    14 Apache Point Observatory and New Mexico State University,
    P.O. Box 59, Sunspot, NM, 88349-0059, USA
    15 Sternberg Astronomical Institute, Moscow State University,
    Moscow, Russia
    16 Department of Astronomy, University of Florida,
    Gainesville, FL 32611, USA
    17 Department of Astronomy & Astrophysics, The Pennsylvania
    State University, University Park, PA 16802, USA
    18 Center for Exoplanets and Habitable Worlds, The Pennsylvania
    State University, University Park, PA 16802, USA
    19 ELTE Gothard Astrophysical Observatory, H-9704 Szombathely,
    Szent Imre Herceg st. 112, Hungary
    20 Instituto de Astrofsica de Canarias, Via Lactea s/n, 38205
    La Laguna, Tenerife, Spain
    21 Departamento de Astrofsica, Universidad de La Laguna,
    38206 La Laguna, Tenerife, Spain
    22 University of Texas, Austin, TX, USA
    23 Department of Physics & Astronomy, Texas Christian
    University, TCU Box 298840, Fort Worth, TX 76129
    (p.frinchaboy@tcu.edu)
    24 Steward Observatory 933 North Cherry Ave, Tuscon, AZ
    85719, USA

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects. Learn and explore all phases and surveys—past, present, and future—of the SDSS.

    The SDSS began regular survey operations in 2000, after a decade of design and construction. It has progressed through several phases, SDSS-I (2000-2005), SDSS-II (2005-2008), SDSS-III (2008-2014), and SDSS-IV (2014-). Each of these phases has involved multiple surveys with interlocking science goals. The three surveys that comprise SDSS-IV are eBOSS, APOGEE-2, and MaNGA, described at the links below. You can find more about the surveys of SDSS I-III by following the Prior Surveys link.

    Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS- IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is http://www.sdss.org.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: