Tagged: Antiproton Decelerator Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:25 pm on March 12, 2019 Permalink | Reply
    Tags: , Antiproton Decelerator, , , , , , ,   

    From CERN: “LS2 Report: Rejuvenation for the Antiproton Decelerator” 

    Cern New Bloc

    Cern New Particle Event

    From CERN

    12 March, 2019
    Achintya Rao

    The Antiproton Decelerator will see refurbishment work that will help its experiments to trap more antimatter than before.

    CERN Antiproton Decelerator

    The Antiproton Decelerator (AD), sometimes known as the Antimatter Factory, is the world’s largest source of antimatter and has been operational since 2000. Here, antiprotons are slowed down and sent into the experiments, where they are combined with antielectrons to produce the most basic antiatom: that of antihydrogen. Over the course of the second long shutdown of CERN’s accelerator complex (LS2), the AD will receive several enhancements as well as repairs and refurbishments.

    The recently installed ELENA ring, which was commissioned over 2017 and 2018, is designed to slow down even further the antiprotons decelerated by AD to ensure that the experiments can trap up to 100 times more antiprotons than they could without it.

    CERN ELENA

    At the moment, ELENA is only connected to one of the experiments within the AD hall, the new GBAR experiment.


    CERN GBAR

    The main work being done on the AD during the next two years is to extend the beam line from ELENA to all of the existing experiments and get ELENA fully operational. The lines that took the particles from the AD to the experiments have now been fully dismantled to prepare for the new injection lines from ELENA.

    Other planned and ongoing activities involve the AD’s 84 magnets, which focus and steer the whizzing antiprotons along their racetrack. Most of these magnets were recycled from previous accelerator facilities and are much older than the AD itself. They are in need of repairs and refurbishment, which started during the previous long shutdown (LS1) and was pursued during subsequent year-end technical stops (YETS). So far, nine of the magnets have been treated, and 20 of them are scheduled for treatment during LS2. The remaining magnets will either be treated in situ or will undergo refurbishment during the next YETS and the third long shutdown (LS3).

    Removing the magnets to take them to the treatment facility is no easy task. The AD ring is encased in a large shielding tunnel made of concrete blocks. Therefore, the blocks making up the ceiling near the magnet in question have to first be removed and stored, allowing a crane to descend though the opening and extract the magnet (which weighs up to 26 tonnes), sometimes with a margin of only 1 cm. Related work is being done to consolidate other elements of the AD, such as the kicker magnets, the septa magnets and the radiofrequency cavities.

    One of the main tasks of LS2 that has already been achieved was the installation of a new cooling pump for the AD. Previously, a single set of pumps were operated, connected to both the AD itself and to its experiments. This meant that the pumping system was operational year round next to the AD ring, producing a constant noise at over 100 decibels in some places. The new dedicated pump allows the main pumping group to be turned off without affecting the experiments’ cooling systems, saving money and improving working conditions for those who need to be in close proximity to the AD over the shutdown period. It also provides much-needed redundancy to the cooling circuits.

    By the end of LS2, the AD hall will look very different from what it does today, but the changes are not merely superficial. They will ensure that CERN’s antimatter factory continues to operate with high efficiency and help explore the mysteries surrounding elusive antimatter.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

     
  • richardmitnick 11:58 pm on April 28, 2018 Permalink | Reply
    Tags: , Antiatoms sent to ALPHA - ASACUSA -BASE- AEGIS- GBARY[TUDY ANTIMAATER AND 'CREATE' ANTIATOMS, , Antiproton Decelerator, , , CERN Antiproton Decelerator produces antiatoms, , , , Proton Synchrotron   

    From CERN: ” LIVE- Inside CERN’s antimatter factory” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    26 Apr 2018
    Harriet Kim Jarlett

    1
    This is the antimatter trap at AEgIS, one of the experiments studying antimatter using CERN’s Antiproton Decelerator (Image: Maximilien Brice and Julien Ordan/CERN)

    For the first time, join us on Facebook for a live behind-the-scenes insight into CERN’s Antiproton Decelerator.

    CERN Antiproton Decelerator

    The Antiproton Decelerator (AD) is a unique machine that produces low-energy antiprotons for studies of antimatter, and “creates” antiatoms. The Decelerator produces antiproton beams and sends them to the different experiments.

    A proton beam that comes from the PS (Proton Synchrotron) is fired into a block of metal. These collisions create a multitude of secondary particles, including lots of antiprotons. These antiprotons have too much energy to be useful for making antiatoms. They also have different energies and move randomly in all directions. The job of the AD is to tame these unruly particles and turn them into a useful, low-energy beam that can be used to produce antimatter.

    Unlike the rest of CERN’s accelerator complex, which speed up particles to study them at high energies, this unique machine slows particles down. The decelerator tames these unruly particles and directs them to six different experiments, ALPHA, ASACUSA, ATRAP, BASE, AEGIS and GBAR. to study antimatter and ‘create’ antiatoms.

    The Big Bang should have created equal amounts of matter and antimatter in the early universe. But today, everything we see from the smallest life forms on Earth to the largest stellar objects is made almost entirely of matter. Comparatively, there is not much antimatter to be found. Something must have happened to tip the balance. One of the greatest challenges in physics is to figure out what happened to the antimatter, or why we see an asymmetry between matter and antimatter.

    We’ll find out why CERN is now the only lab in the world producing antimatter, how we create these antimatter particles and what these experiments will teach us about our Universe.

    Watch the live on Facebook:

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    OTHER PROJECTS AT CERN

    CERN AEGIS

    CERN ALPHA

    CERN ALPHA

    CERN AMS

    CERN ACACUSA

    CERN ASACUSA

    CERN ATRAP

    CERN ATRAP

    CERN AWAKE

    CERN AWAKE

    CERN CAST

    CERN CAST Axion Solar Telescope

    CERN CLOUD

    CERN CLOUD

    CERN COMPASS

    CERN COMPASS

    CERN DIRAC

    CERN DIRAC

    CERN ISOLDE

    CERN ISOLDE

    CERN LHCf

    CERN LHCf

    CERN NA62

    CERN NA62

    CERN NTOF

    CERN TOTEM

    CERN UA9

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: