Tagged: Andrea Ghez Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:38 pm on August 2, 2017 Permalink | Reply
    Tags: Andrea Ghez, , , , , G2- star or gas cloud? Settled it is a star, ,   

    From Quanta: “Black-Hole Hunter Takes Aim at Einstein” 

    Quanta Magazine
    Quanta Magazine

    July 27, 2017
    Joshua Sokol

    Andrea Ghez at the W.M. Keck Observatory Headquarters in Waimea, Hawaii. John Hook for Quanta Magazine.

    If you cast an observational lasso into the center of the Milky Way galaxy and pull it closed, you will find a dense, dark lump: a mass totaling some four million suns, crammed into a space no wider than twice Pluto’s orbit in our solar system.

    In recent years, astronomers have come to agree that inside this region is a supermassive black hole, and that similar black holes lurk at the cores of nearly all other galaxies as well. And for those revelations, they give a lot of credit to Andrea Ghez.

    Since 1995, Ghez, an astrophysicist at the University of California, Los Angeles, has used the W.M. Keck telescope on Mauna Kea in Hawaii to see fine details at the center of the galaxy. The observations that Ghez has made of stars racing around the Milky Way’s core (alongside those of rival Reinhard Genzel, an astrophysicist at the Max Planck Institute for Astrophysics in Garching, Germany) have proven to most astronomers that the central object can be nothing but a black hole. But to be able to see these fine details, Ghez had to become a pioneering user of adaptive optics, a technology that measures distortions in the atmosphere and then adjusts the telescope in real time to cancel out those fluctuations. The technique produces images that look as if they were taken under the calmest possible skies.

    In Ghez’s mind, new discoveries require that scientists take risks. “If you have a new idea, the thing you are going to encounter first and foremost is ‘no, you can’t do it,’” she said. “I can’t tell you how many times in the course of this project I have been told ‘this won’t work.’” Her first proposal to image the galactic center was turned down; two decades later, Ghez, now 52, has received a MacArthur Fellowship, among other awards, and was the first woman to receive a Crafoord Prize from the Royal Swedish Academy of Sciences.

    Ghez maps the movements of stars around the supermassive black hole at the galaxy’s center. John Hook for Quanta Magazine.

    The supermassive black hole has been identified, but her explorations are far from over. Theories of galactic evolution suggest that the Milky Way’s center should have lots of old stars and almost no young stars. Observations show the opposite. Ghez’s group is also tracking a mysterious, glowing infrared blob called G2 that skimmed past the black hole in 2014. And now, using their decades-long data set, her team has begun testing whether the stars orbiting the black hole move according to the rules of Einstein’s general relativity or are subject to exotic deviations from theory.

    Quanta caught up with Ghez to hear about these projects and her plans. The interview has been edited and condensed for clarity.

    You use new telescope technology to address deep theoretical questions. Which one comes first for you: observation or theory?

    I think that’s a great question about creativity and discovery. Like, how do you figure out your next project? For me, what floats my boat the most is to figure out new ways of seeing things; to reveal puzzles. What makes me happiest is when observations don’t make sense. And in order for observations to not make sense in a new way — in other words to not be doing incremental work — you need to be looking in a way that’s different.

    Your team and Reinhard Genzel’s group disagreed about how to interpret the observations of G2.

    An image from W. M. Keck Observatory near infrared data shows that G2 survived its closest approach to the black hole and continues happily on its orbit. The green circle just to its right depicts the location of the invisible supermassive black hole. Credit: Andrea Ghez, Gunther Witzel/UCLA Galactic Center Group/W. M. Keck Observatory. Universe Today.

    They thought it was a gas cloud; your group suggested it was a star. Can you walk us through what happened when it passed the black hole in 2014?

    I was pretty convinced that you could explain this object with a model in which you said the object was actually intrinsically a star. One of the key determinants of whether it was a pure gas cloud or a star was whether or not it survived closest approach in 2014. It happily survived.

    The interpretation that I am most intrigued by is the idea that you are seeing an object that began its life as a binary star. And if you put very close binaries near a black hole, it turns out to induce what’s known as a three-body interaction, and the binary can merge. So black holes can drive binaries to merge more quickly than they would anywhere else in our galaxy. You end up with an object that has the characteristics of what we are looking at.

    It also explains some of the unusual observations of the center of the galaxy. We see many young stars at the center of the galaxy that are hard to explain. It turns out that when binaries merge, it’s like resetting the clock; you get a rebirth of a star, so to speak. So it will create an excess of apparently young stars really close to the black hole, and that’s exactly what we see.

    And then after we got very excited about this whole business of binaries, the detection [of gravitational waves from a black-hole merger] happened. In fact, if you take this scenario that we’re developing, where G2 at the galactic center is a binary, it actually gives a mechanism for very naturally explaining these events.

    You’re referring to the fact that the Laser Interferometer Gravitational-Wave Observatory (LIGO) found black holes of around 30 times the mass of the sun, which is heavier than astronomers expected?

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    If you took two stellar-mass black holes that are the mass that we anticipated, which is 10 times the mass of the sun rather than the 30 that is being observed, and put them near a supermassive black hole, then the two would merge to become a 20 solar mass black hole. And if you do this successively you can work your way up to the 30 solar mass number.

    Again, we always start with what’s simple, and then the observations often lay out a more complicated picture. But today, the standard picture is that most if not all galaxies harbor supermassive black holes, so if you think they can play an important role in terms of driving binary stars to merge, then you need to think about that in terms of understanding LIGO. So I think G2 has this really interesting connection — potentially, let me really emphasize potential, as this just an idea we’re playing with — but it has a lot of nice attributes of being very consistent with what we know today about the universe and the center of our galaxy specifically.

    By which you mean the young stars in the galactic center, and the LIGO observations?

    Right. There’s a third mystery that may be a bit of a stretch. We anticipate that the population of old stars should be greater near the black hole. And yet we actually don’t see that. There are all sorts of different explanations, from all different camps, but one camp is that the old stars that you are looking at have envelopes that are a little fluffy. If you think that binary stars are being driven to merge, before they merge the binaries might strip these old stars of their outer envelopes. That would make them fainter than you expect them to be, so the lack of old stars might just be an observational outcome of this binary process. Again — when you line up all your mysteries, you have to ask, well, what’s the missing element? What am I not seeing?

    You have started testing general relativity around the supermassive black hole, and you haven’t found any deviations yet from Einstein’s predictions. What are your plans for this project?

    In 2018, the star that is the strongest probe of the gravity around the black hole, S02, will make its next closest approach. And it will be the first time we have enough of a handle on its orbit for that closest passage to probe the laws of gravity. In the space of a month or so its velocity will change by more than 6,000 kilometers per second. That’s what will enable us to test general relativity.

    Speaking of improvements in technology, you were until recently on the science advisory committee of the Thirty Meter Telescope (TMT), which is expected to be the world’s most powerful ground-based telescope.

    TMT-Thirty Meter Telescope, proposed for Mauna Kea, Hawaii, USA

    The observatory was planned for Mauna Kea, but the Hawaiian Sovereignty Movement considers that mountain a sacred place and is opposing the project. Spain’s Canary Islands have been chosen as a backup location. If TMT doesn’t go up on Mauna Kea, how does that affect your studies of the galactic center?

    Oh, you know, that’s such a can of worms. Let me tell you a side story before we get into this more political stuff.

    Today, all these weird phenomena that we see — like G2, and the young stars where there should be none, and not enough old stars — you’re really only looking at the brightest stars. So, in order to truly understand the population, you really need to see the typical star, because most stars are low mass or faint. So as we improve our technology both in terms of adaptive optics and going to larger telescopes, it allows you to see a typical star like the sun.

    In addition, not only would better resolution let you probe gravity with better measurements of the stellar orbits, but you can increase your understanding of how black holes impact the evolution of a galaxy. And this effect is a key parameter of all cosmological models. You want to be able to see not just the tip of the iceberg in terms of the stellar population.

    OK, so then let’s tackle this TMT story. I was on the TMT science advisory committee for, I don’t know, 13 years. The thing that is important is that you get a site where adaptive optics works really well. That means that you want a very smooth airflow over the site where your telescope is at; you want to be on a mountain that is surrounded by a body of water. So you always see observatories near water. Hawaii is surrounded by water, and the Canary Islands are surrounded by water, as opposed to having just water on one side. That makes for much smoother airflows. So I think that the alternative site has some interesting characteristics. Without being — can you tell my angst about talking about this?

    Yes, sorry to put you on the spot. But I had to, because it’s very interesting.

    It’s a very interesting story that goes so far beyond science. If it were only a scientific decision, today, Mauna Kea would be my preference. It’s what we chose, so we chose it for a reason. It’s a great site from the point of view of performance of adaptive optics. From my biased perspective, it’s also farther south, so it’s easier to see the center of the galaxy. But one has to be totally respectful of the cultural issues associated with Mauna Kea. It’s one thing to be an astronomer over on the mainland thinking and looking at this, but when you go over there, you understand that it’s a much more complex issue.

    I hope for the sake of science, and also for the sake of bringing science and technology to the state of Hawaii, that this project can continue. But it has to continue in a way that works for all the players. And I think the issues have risen far above the issues of astronomy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

  • richardmitnick 7:22 am on May 27, 2017 Permalink | Reply
    Tags: , Andrea Ghez, Fifth force, , , ,   

    From KECK: “New Method of Searching for Fifth Force” 

    Keck Observatory

    Keck Observatory.
    Keck, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    Keck Observatory

    The orbits of two stars, S0-2 and S0-38 located near the Milky Way’s supermassive black hole will be used to test Einstein’s theory of General Relativity and potentially generate new gravitational models. IMAGE CREDIT: S. SAKAI/A.GHEZ/W. M. KECK OBSERVATORY/ UCLA GALACTIC CENTER GROUP

    W. M. Keck Observatory Data Leads To First Of Its Kind Test of Einstein’s Theory of General Relativity.

    May 26, 2017
    No writer credit found.

    A UCLA-led team has discovered a new way of probing the hypothetical fifth force of nature using two decades of observations at W. M. Keck Observatory, the world’s most scientifically productive ground-based telescope.

    There are four known forces in the universe: electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force. Physicists know how to make the first three work together, but gravity is the odd one out. For decades, there have been theories that a fifth force ties gravity to the others, but no one has been able to prove it thus far.

    “This is really exciting. It’s taken us 20 years to get here, but now our work on studying stars at the center of our galaxy is opening up a new method of looking at how gravity works,” said Andrea Ghez, Director of the UCLA Galactic Center Group and co-author of the study.

    The research is published in the current issue of Physical Review Letters.

    Ghez and her co-workers analyzed extremely sharp images of the center of our galaxy taken with Keck Observatory’s adaptive optics (AO). Ghez used this cutting-edge system to track the orbits of stars near the supermassive black hole located at the center of the Milky Way.

    Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

    Their stellar path, driven by gravity created from the supermassive black hole, could give clues to the fifth force.

    “By watching the stars move over 20 years using very precise measurements taken from Keck Observatory data, you can see and put constraints on how gravity works. If gravitation is driven by something other than Einstein’s theory of General Relativity, you’ll see small variations in the orbital paths of the stars,” said Ghez.

    Pictured above: UCLA Professor of Astrophysics and Galactic Center Group Director Andrea Ghez, a Keck Observatory astronomer and recipient of the 2015 Bakerian Medal. IMAGE CREDIT: KYLE ALEXANDER

    This is the first time the fifth force theory has been tested in a strong gravitational field such as the one created by the supermassive black hole at the center of the Milky Way. Historically, measurements of our solar system’s gravity created by our sun have been used to try and detect the fifth force, but that has proven difficult because its gravitational field is relatively weak.

    “It’s exciting that we can do this because we can ask a very fundamental question – how does gravity work?” said Ghez. “Einstein’s theory describes it beautifully well, but there’s lots of evidence showing the theory has holes. The mere existence of supermassive black holes tells us that our current theories of how the universe works are inadequate to explain what a black hole is.”

    Ghez and her team, including lead author Aurelien Hees and co-author Tuan Do, both of UCLA, are looking forward to summer of 2018. That is when the star S0-2 will be at its closest distance to our galaxy’s supermassive black hole. This will allow the team to witness the star being pulled at maximum gravitational strength – a point where any deviations to Einstein’s theory is expected to be the greatest.

    About Adaptive Optics

    W. M. Keck Observatory is a distinguished leader in the field of adaptive optics (AO), a breakthrough technology that removes the distortions caused by the turbulence in the Earth’s atmosphere.

    Keck Observatory pioneered the astronomical use of both natural guide star (NGS) and laser guide star adaptive optics (LGS AO) and our current systems now deliver images three to four times sharper than the Hubble Space Telescope. AO has imaged the four massive planets orbiting the star HR8799, measured the mass of the giant black hole at the center of our Milky Way Galaxy, discovered new supernovae in distant galaxies, and identified the specific stars that were their progenitors.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

  • richardmitnick 8:58 am on May 25, 2017 Permalink | Reply
    Tags: , Andrea Ghez, , , , ,   

    From Nautilus: “Opening a New Window into the Universe” 



    April 2017
    Andrea Ghez, UCLA, UCO

    Andrea Ghez. PBS NOVA

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California

    Keck Observatory, Mauna Kea, Hawaii, USA

    New technology could bring new insights into the nature of black holes, dark matter, and extrasolar planets.

    Earthbound telescopes see stars and other astronomical objects through a haze. The light waves they gather have traveled unimpeded through space for billions of years, only to be distorted in the last millisecond by the Earth’s turbulent atmosphere. That distortion is now even more important, because scientists are preparing to build the three largest telescopes on Earth, each with light-gathering surfaces of 20 to 40 meters across.

    The new giant telescopes:

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile

    TMT-Thirty Meter Telescope, proposed for Mauna Kea, Hawaii, USA

    Giant Magellan Telescope, to be at Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile

    In principle, the larger the telescope, the higher the resolution of astronomical images. In practice, the distorting veil of the atmosphere has always limited what can be achieved. Now, a rapidly evolving technology known as adaptive optics can strip away the veil and enable astronomers to take full advantage of current and future large telescopes. Indeed, adaptive optics is already making possible important discoveries and observations, including: the discovery of the supermassive black hole at the center of our galaxy, proving that such exotic objects exist; the first images and spectra of planetary systems around other stars; and high-resolution observations of galaxies forming in the early universe.

    But adaptive optics has still not delivered its full scientific potential.

    ESO 4LGSF Adaptive Optics Facility (AOF)

    Existing technology can only partially correct the atmospheric blurring and cannot provide any correction for large portions of the sky or for the majority of the objects astronomers want to study.

    The project we propose here to fully exploit the potential of adaptive optics by taking the technology to the next level would boost research on a number of critical astrophysical questions, including:

    What are supermassive black holes and how do they work? Adaptive Optics has opened a new approach to studying supermassive black holes—through stellar orbits—but only the brightest stars, the tip of the iceberg, have been measured. With next generation adaptive optics we will be able to take the next leap forward in our studies of these poorly understood objects that are believed to play a central role in our universe. The space near the massive black hole at the center of our galaxy, for example, is a place where gravitational forces reach extreme levels. Does Einstein’s general theory of relativity still apply, or do exotic new physical phenomena emerge? How do these massive black holes shape their host galaxies? Early adaptive optics observations at the galactic center have revealed a completely unexpected environment, challenging our notions on the relationship between black holes and galaxies, which are a fundamental ingredient to cosmological models. One way to answer both of these questions is to find and measure the orbits of faint stars that are closer to the black hole than any known so far—which advanced adaptive optics would make possible.
    The first direct images of an extrasolar planet—obtained with adaptive optics—has raised fundamental questions about star and planet formation. How exactly do new stars form and then spawn planets from the gaseous disks around them? New, higher resolution images of this process—with undistorted data from larger telescopes—can help answer this question, and may also reveal how our solar system was formed. In addition, although only a handful of new-born planets has been found to date, advanced adaptive optics will enable astronomers to find many more and help determine their composition and life-bearing potential.
    Dark matter and dark energy are still completely mysterious, even though they constitute most of the universe.

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    But detailed observations using adaptive optics of how light from distant galaxies is refracted around a closer galaxy to form multiple images—so-called gravitational lensing—can help scientists understand how dark matter and dark energy change space itself.

    In addition, it is clear that telescopes endowed with advanced adaptive optics technology will inspire a whole generation of astronomers to design and carry out a multitude of innovative research projects that were previously not possible.

    The laser system used to make artificial guide stars that sense the blurring effects of the Earth’s atmosphere being used on both Keck I and Keck II during adaptive optics observations of the center of our Galaxy. Next Generation Adaptive Optics would have multiple laser beams for each telescope. Ethan Tweedie

    Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

    The technology of adaptive optics is quite simple, in principle. First, astronomers measure the instantaneous turbulence in the atmosphere by looking at the light from a bright, known object—a “guide star”—or by using a laser tuned to make sodium atoms in a thin layer of the upper atmosphere fluoresce and glow as an artificial guide star.

    ESO VLT Adaptive Optics new Guide Star laser light

    The turbulence measurements are used to compute (also instantaneously) the distortions that turbulence creates in the incoming light waves. Those distortions are then counteracted by rapidly morphing the surface of a deformable mirror in the telescope. Measurements and corrections are done hundreds of times per second—which is only possible with powerful computing capability, sophisticated opto-mechanical linkages, and a real-time control system. We know how to build these tools.

    Of course, telescopes that operate above the atmosphere, such as the Hubble Space Telescope, don’t need adaptive optics.

    NASA/ESA Hubble Telescope

    But both the Hubble and the coming next generation of space telescopes are small compared to the enormous earth-based telescopes now being planned.

    LSST Camera, built at SLAC

    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    And for the kinds of research that require very high resolution, such as the topics mentioned above and many others, there is really no substitute for the light-gathering power of telescopes too huge to be put into space.

    The next generation of adaptive optics could effectively take even the largest earth-bound telescopes “above the atmosphere” and make them truly amazing new windows on the universe. We know how to create this capability—the technology is in hand and the teams are assembled. It is time to put advanced adaptive optics to work.

    Creating Next Generation Adaptive Optics

    Adaptive optics (AO) imaging technology is used to improve the performance of optical systems by correcting distortions on light waves that have traveled through a turbulent medium. The technology has revolutionized fields from ophthalmology and vision science to laser communications. In astronomy, AO uses sophisticated, deformable mirrors controlled by fast computers to correct, in real-time, the distortion caused by the turbulence of the Earth’s atmosphere. Telescopes equipped with AO are already producing sharper, clearer views of distant astronomical objects than had ever before been possible, even from space. But current AO systems only partially correct for the effects of atmospheric blurring, and only when telescopes are pointed in certain directions. The aim of Next Generation Adaptive Optics is to overcome these limitations and provide precise correction for atmospheric blurring anywhere in the sky.

    One current limitation is the laser guide star that energizes sodium atoms in the upper atmosphere and causes them to glow as an artificial star used to measure the atmospheric distortions. This guide “star” is relatively close, only about 90 kilometers above the Earth’s surface, so the technique only probes a conical volume of the atmosphere above the telescope, and not the full cylinder of air through which genuine star light must pass to reach the telescope. Consequently, much of the distorting atmospheric structure is not measured. The next generation AO we propose will employ seven laser guide stars, providing full coverage of the entire cylindrical path travelled by light from the astronomical object being studied.

    The next generation of adaptive optics will have several laser-created artificial guide stars, better optics, higher performance computers, and more advanced science instruments. Such a system will deliver the highest-definition images and spectra over nearly the entire sky and will enable unique new means of measuring the properties of stars, planets, galaxies, and black holes.
    J.Lu (U of Hawaii) & T. Do (UCLA)

    This technique can map the 3-D structure of the atmosphere, similar to how MRI medical imaging maps the human body. Simulations demonstrate that the resulting corrections will be excellent and stable, yielding revolutionary improvements in imaging. For example, the light from a star will be concentrated into a tiny area of the focal plane camera, and be far less spread out than it is with current systems, giving sharp, crisp images that show the finest detail possible.

    This will be particularly important for existing large telescopes such as the W. M. Keck Observatory (WMKO) [above]—currently the world’s leading AO platform in astronomy. Both our team—the UCLA Galactic Center Group (GCG)—and the WMKO staff have been deeply involved in the development of next generation AO systems.

    The quantum leap in the quality of both imaging and spectroscopy that next generation AO can bring to the Keck telescopes will likely pave the way for advanced AO systems on telescopes around the globe. For the next generation of extremely large telescopes, however, these AO advances will be critical. This is because the cylindrical volume of atmosphere through which light must pass to reach the mirrors in such large telescopes is so broad that present AO techniques will not be able to provide satisfactory corrections. For that reason, next generation AO techniques are critical to the future of infrared astronomy, and eventually of optical astronomy as well.

    The total proposed budget is $80 million over five years. The three major components necessary to take the leap in science capability include the laser guide star system, the adaptive optics system, and a powerful new science instrument, consisting of an infrared imager and an infrared spectrograph, that provides the observing capability to take advantage of the new adaptive optics system. This investment in adaptive optics will also help develop a strong workforce for other critical science and technology industries, as many students are actively recruited into industry positions in laser communications, bio-medical optics, big-data analytics for finance and business, image sensing and optics for government and defense applications, and the space industry. This investment will also help keep the U.S. in the scientific and technological lead. Well-funded European groups have recognized the power of AO and are developing competitive systems, though the next generation AO project described here will set an altogether new standard.

    Federal funding agencies find the science case for this work compelling, but they have made clear that it is beyond present budgetary means. Therefore, this is an extraordinary opportunity for private philanthropy—for visionaries outside the government to help bring this ambitious breakthrough project to reality and open a new window into the universe.

    Andrea Ghez is the Lauren B. Leichtman & Arthur E. Levine Chair in Astrophysics Director, UCLA Galactic Center Group.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

  • richardmitnick 4:54 pm on July 31, 2015 Permalink | Reply
    Tags: Andrea Ghez, , ,   

    From Keck: “Keck Observatory Astronomer Wins Major Prize” Andrea Ghez 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    July 31, 2015
    Christopher Dibble

    Andrea Ghez, Keck Observatory astronomer and UCLA’s Lauren B. Leichtman and Arthur E. Levine Professor of Astrophysics.

    UCLA professor and longtime W. M. Keck Observatory astronomer, Andrea Ghez will be awarded the 2015 Bakerian Medal, the Royal Society’s premiere prize lecture in the physical sciences, the organization announced this week.

    “I’m thrilled to receive the Bakerian Medal from the Royal Society,” said Ghez, who is UCLA’s Lauren B. Leichtman and Arthur E. Levine Professor of Astrophysics. “The research that is being recognized is the product of a wonderful collaboration among the scientists in the UCLA Galactic Center Group and the University of California’s tremendous investment in the W. M. Keck Observatory. Having cutting-edge tools and a great team makes discovery easy.”

    The medal is accompanied by a cash prize of 10,000 pounds (approximately $15,500), and Ghez will deliver the Bakerian Lecture in London in November. The organization, the oldest scientific academy in continuous existence, cited Ghez’s “acclaimed discoveries using the techniques of optical astronomy, especially her sustained work on the motions and nature of the stars orbiting the black hole in the centre of our Galaxy.”

    “All the data for this project came from Keck Observatory,” Ghez said. “We were able to launch this project 20 years ago because of the unique way that Keck Observatory works. We were able to modify instrumentation and try new approaches to data collection in a way that simply isn’t possible at other observatories. Working at Keck Observatory and with the staff there has been an amazing experience.”

    Since 1995, Ghez has used the Keck Observatory, which sits near the summit of Hawaii’s dormant volcano Maunakea, to study the rotational center of the Milky Way and the movement of thousands of stars close to this galactic center. Keck Observatory operates the two largest and most scientifically productive telescopes on Earth.

    Ghez, a 2008 MacArthur Fellow, uses novel, ground-based telescopic techniques to remove the blurring effects of the Earth’s atmosphere, making the sharpest possible images of the center of our galaxy.

    By measuring the orbits of stars at the center of our galaxy, she showed that a monstrous black hole resides at the center of our Milky Way galaxy, some 26,000 light-years away from Earth, with a mass 4 million times that of the sun. The finding provided the best evidence yet that supermassive black holes exist in our universe. Ghez and her research team have revealed many unexpected mysteries about the role that black holes play in the formation and evolution of galaxies.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

  • richardmitnick 4:04 pm on December 5, 2014 Permalink | Reply
    Tags: Andrea Ghez, , , , , , ,   

    From NSF: “After the Lecture…Andrea Ghez” 

    National Science Foundation

    December 5, 2014

    NSF-funded UCLA astrophysicist Andrea Ghez on probing our galaxy’s supermassive black hole

    Andrea Ghez
    Dr.Andrea Ghez is an astrophysicist at UCLA who has been recognized many times for her research in galactic astronomy, including receiving a MacArthur Fellowship, a Packard Fellowship award, and several other awards early on in her career. Credit: Courtesy of the John D. and Catherine T. MacArthur Foundation via Wikimedia Commons

    Andrea's Favorite SO-2
    Andrea’s Favorite SO-2
    December 5, 2014

    We sat down with UCLA’s Andrea Ghez after her recent talk on Unveiling the Heart of the Galaxy as part of the NSF Distinguished Lectures in Mathematical and Physical Sciences. A few minutes later, we were probing the connection between ballet and astrophysics and why sometimes being outside of mainstream science can offer a scientist creative license that seeds transformational research.

    I was not a science fiction buff. I was always a puzzle buff, and I absolutely loved math. I still think of my job as puzzle solving. As a child, I also was fascinated by stories of women explorers–my favorite was Amelia Earhart.

    At some point in high school, I got fascinated by the concepts of black holes and the beginning of time.

    It’s asking the biggest questions we can possibly ask. It’s understanding our position in the universe. It’s what makes us uniquely human–to try and understand our context in the biggest possible terms. It’s what inspires us.

    Adaptive optics has transformed what we can do. When we started with speckle imaging, it was this bizarre little technique only a few people knew how to do. It was a niche-like a boutique technique. Adaptive optics has opened up the world of science so we can ask a much richer set of questions. It’s made it a technique for every astronomer.

    I used to be tremendously afraid of public speaking. I would shake if you asked me to introduce myself. I chose grad school for places where I would not have to teach because I was so deathly afraid of getting in front of an audience. But my adviser made me give a lunchtime talk, and every bone in my body shook. He was sweet but said I needed to teach. I’ve always been strongly committed to encouraging young girls to go into science, so I figured if I was going to teach, I would do it in a meaningful way for me. You just can’t get nervous every day, and I learned how to translate nervousness into excitement. That becomes your style. You are no longer nervous.

    I haven’t seen Interstellar. It’s on the top of my why-haven’t-I-seen-it list.

    You’re basically an idiot until you prove you’re smart. That’s what it’s like to be in science.

    My approach has always been to give myself the highest credentials possible. So when I thought about where to go to school, I really did think about the school that would give me the best “coat of armor” for dealing with any doubt. At every stage of my career, I think there’s been someone who pipes up with “you’ve only done this because you’re a woman” comment. And it’s not like everyone says this. It’s just that that’s the one comment you listen to.

    It’s really important to pick a good mentor. I think this is true, independent of gender.

    I almost increasingly think that there is an advantage to being outside mainstream because a lot of progress in science comes from the ability to think differently and to not necessarily accept what everyone has put out there. If you propose something different from what people are doing, how comfortable are you with being outside the group?

    To do science, it’s so important to take risks and accept failure. How do you train your students to do that? It’s a very important characteristic.

    I was really interested in dancing when I was young; I wanted to be a ballerina. At one point I got more interested in choreography. For some reason, I now think of my work as this combination of puzzle solving and choreography. I would never have made the connection between that kind of thinking and what I do today, yet it’s totally there.

    There have definitely been moments where I felt like I’m not playing on the right playground because I’m not seeing anyone I can relate to. Meeting people you can relate to is remarkably powerful and sometimes you find those people who inspire you to go onto the next step in very unexpected places.

    I think if I were not a physicist, I’d be some other sort of scientist or mathematician who is focused on solving problems.

    Ivy F. Kupec, (703) 292-8796 ikupec@nsf.gov

    Andrea Ghez

    Related Institutions/Organizations
    California Institute of Technology
    University of California-Los Angeles

    Los Angeles , California

    Related Awards
    #0909218 A Laser Guide Star Adaptive Optics Study of Stellar Dynamics at the Galactic Center: A Laboratory for Understanding Interactions with a Central Supermassive Black Holes
    #1412615 New Probes of the Galactic Black Hole and its Environs

    See the full article http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=133541&WT.mc_id=USNSF_1

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.


Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: