Tagged: Andrea Ghez/Keck Observatory/UCLA Galactic Center Group Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:00 am on February 7, 2019 Permalink | Reply
    Tags: Abraham (Avi) Loeb, Andrea Ghez/Keck Observatory/UCLA Galactic Center Group, , , , Black Hole Initiative, Black Hole Institute, , , Infrared results beautifully complemented by observations at radio wavelengths, , , , S-02, , , The development of high-resolution infrared cameras revealed a dense cluster of stars at the center of the Milky Way   

    From Nautilus: “How Supermassive Black Holes Were Discovered” 


    From Nautilus

    February 7, 2019
    Mark J. Reid, CfA SAO

    Astronomers turned a fantastic concept into reality.

    An Introduction to the Black Hole Institute

    Fittingly, the Black Hole Initiative (BHI) was founded 100 years after Karl Schwarzschild solved Einstein’s equations for general relativity—a solution that described a black hole decades before the first astronomical evidence that they exist. As exotic structures of spacetime, black holes continue to fascinate astronomers, physicists, mathematicians, philosophers, and the general public, following on a century of research into their mysterious nature.

    Pictor A Blast from Black Hole in a Galaxy Far, Far Away

    This computer-simulated image of a supermassive black hole at the core of a galaxy. Credit NASA, ESA, and D. Coe, J. Anderson

    The mission of the BHI is interdisciplinary and, to that end, we sponsor many events that create the environment to support interaction between researchers of different disciplines. Philosophers speak with mathematicians, physicists, and astronomers, theorists speak with observers and a series of scheduled events create the venue for people to regularly come together.

    As an example, for a problem we care about, consider the singularities at the centers of black holes, which mark the breakdown of Einstein’s theory of gravity. What would a singularity look like in the quantum mechanical context? Most likely, it would appear as an extreme concentration of a huge mass (more than a few solar masses for astrophysical black holes) within a tiny volume. The size of the reservoir that drains all matter that fell into an astrophysical black hole is unknown and constitutes one of the unsolved problems on which BHI scholars work.

    We are delighted to present a collection of essays which were carefully selected by our senior faculty out of many applications to the first essay competition of the BHI. The winning essays will be published here on Nautilus over the next five weeks, beginning with the fifth-place finisher and working up to the first-place finisher. We hope that you will enjoy them as much as we did.

    —Abraham (Avi) Loeb
    Frank B. Baird, Jr. Professor of Science, Harvard University
    Chair, Harvard Astronomy Department
    Founding Director, Black Hole Initiative (BHI)

    In the 1700s, John Michell in England and Pierre-Simon Laplace in France independently thought “way out of the box” and imagined what would happen if a huge mass were placed in an incredibly small volume. Pushing this thought experiment to the limit, they conjectured that gravitational forces might not allow anything, even light, to escape. Michell and Laplace were imagining what we now call a black hole.

    Astronomers are now convinced that when massive stars burn through their nuclear fuel, they collapse to near nothingness and form a black hole. While the concept of a star collapsing to a black hole is astounding, the possibility that material from millions and even billions of stars can condense into a single supermassive black hole is even more fantastic.

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Yet astronomers are now confident that supermassive black holes exist and are found in the centers of most of the 100 billion galaxies in the universe.

    How did we come to this astonishing conclusion? The story begins in the mid-1900s when astronomers expanded their horizons beyond the very narrow range of wavelengths to which our eyes are sensitive. Very strong sources of radio waves were discovered and, when accurate positions were determined, many were found to be centered on distant galaxies. Shortly thereafter, radio antennas were linked together to greatly improve angular resolution.

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    CfA Submillimeter Array Mauna Kea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    These new “interferometers” revealed a totally unexpected picture of the radio emission from galaxies—the radio waves did not appear to come from the galaxy itself, but from two huge “lobes” symmetrically placed about the galaxy. Figure One shows an example of such a “radio galaxy,” named Cygnus A. Radio lobes can be among the largest structures in the universe, upward of a hundred times the size of the galaxy itself.

    Figure One: Radio image of the galaxy Cygnus A. Dominating the image are two huge “lobes” of radio emitting plasma. An optical image of the host galaxy would be smaller than the gap between the lobes. The minimum energy needed to power some radio lobes can be equivalent to the total conversion of 10 million stars to energy! Note the thin trails of radio emission that connect the lobes with the bright spot at the center, where all of the energy originates. NRAO/AUI

    How are immense radio lobes energized? Their symmetrical placement about a galaxy clearly suggested a close relationship. In the 1960s, sensitive radio interferometers confirmed the circumstantial case for a relationship by discovering faint trails, or “jets,” tracing radio emission from the lobes back to a very compact source at the precise center of the galaxy. These findings motivated radio astronomers to increase the sizes of their interferometers in order to better resolve these emissions. Ultimately this led to the technique of Very Long Baseline Interferometry (VLBI), in which radio signals from antennas across the Earth are combined to obtain the angular resolution of a telescope the size of our planet!

    GMVA The Global VLBI Array

    Radio images made from VLBI observations soon revealed that the sources at the centers of radio galaxies are “microscopic” by galaxy standards, even smaller than the distance between the sun and our nearest star.

    When astronomers calculated the energy needed to power radio lobes they were astounded. It required 10 million stars to be “vaporized,” totally converting their mass to energy using Einstein’s famous equation E = mc2! Nuclear reactions, which power stars, cannot even convert 1 percent of a star’s mass to energy. So trying to explain the energy in radio lobes with nuclear power would require more than 1 billion stars, and these stars would have to live within the “microscopic” volume indicated by the VLBI observations. Because of these findings, astronomers began considering alternative energy sources: supermassive black holes.

    Given that the centers of galaxies might harbor supermassive black holes, it was natural to check the center of our Milky Way galaxy for such a monster. In 1974, a very compact radio source, smaller than 1 second of arc (1/3600 of a degree) was discovered there. The compact source was named Sagittarius A*, or Sgr A* for short, and is shown at the center of the right panel of Figure 2. Early VLBI observations established that Sgr A* was far more compact than the size of our solar system. However, no obvious optical, infrared, or even X-ray emitting source could be confidently identified with it, and its nature remained mysterious.

    Figure Two: Images of the central region of the Milky Way. The left panel shows an infrared image. The orbital track of star S2 is overlaid, magnified by a factor of 100. The orbit has period of 16 years, requires an unseen mass of 4 million times that of the sun, and the gravitational center is indicated by the arrow. The right panel shows a radio image. The point-like radio source Sgr A* (just below the middle of the image) is precisely at the gravitational center of the orbiting stars. Sgr A* is intrinsically motionless at the galactic center and, therefore, must be extremely massive.Left panel: R. Genzel; Right panel: J.-H. Zhao

    Star S0-2 Andrea Ghez Keck/UCLA Galactic Center Group

    Andrea’s Favorite star SO-2

    Andrea Ghez, astrophysicist and professor at the University of California, Los Angeles, who leads a team of scientists observing S2 for evidence of a supermassive black hole UCLA Galactic Center Group

    SGR A and SGR A* from Penn State and NASA/Chandra

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Meanwhile, the development of high-resolution infrared cameras revealed a dense cluster of stars at the center of the Milky Way. These stars cannot be seen at optical wavelengths, because visible light is totally absorbed by intervening dust. However, at infrared wavelengths 10 percent of their starlight makes its way to our telescopes, and astronomers have been measuring the positions of these stars for more than two decades. These observations culminated with the important discovery that stars are moving along elliptical paths, which are a unique characteristic of gravitational orbits. One of these stars has now been traced over a complete orbit, as shown in the left panel of Figure Two.

    Many stars have been followed along partial orbits, and all are consistent with orbits about a single object. Two stars have been observed to approach the center to within the size of our solar system, which by galaxy standards is very small. At this point, gravity is so strong that stars are orbiting at nearly 10,000 kilometers per second—fast enough to cross the Earth in one second! These measurements leave no doubt that the stars are responding to an unseen mass of 4 million times that of the sun. Combining this mass with the (astronomically) small volume indicated by the stellar orbits implies an extraordinarily high density. At this density it is hard to imagine how any type of matter would not collapse to form a black hole.

    The infrared results just described are beautifully complemented by observations at radio wavelengths. In order to identify an infrared counterpart for Sgr A*, the position of the radio source needed to be precisely transferred to infrared images. An ingenious method to do this uses sources visible at both radio and infrared wavelengths to tie the reference frames together. Ideal sources are giant red stars, which are bright in the infrared and have strong emission at radio wavelengths from molecules surrounding them. By matching the positions of these stars at the two wavebands, the radio position of Sgr A* can be transferred to infrared images with an accuracy of 0.001 seconds of arc. This technique placed Sgr A* precisely at the position of the gravitational center of the orbiting stars.

    How much of the dark mass within the stellar orbits can be directly associated with the radio source Sgr A*? Were Sgr A* a star, it would be moving at over 10,000 kilometers per second in the strong gravitational field as other stars are observed to do. Only if Sgr A* is extremely massive would it move slowly. The position of Sgr A* has been monitored with VLBI techniques for over two decades, revealing that it is essentially stationary at the dynamical center of the Milky Way. Specifically, the component of Sgr A*’s intrinsic motion perpendicular to the plane of the Milky Way is less than one kilometer per second. By comparison, this is 30 times slower than the Earth orbits the sun. The discovery that Sgr A* is essentially stationary and anchors the galactic center requires that Sgr A* contains over 400,000 times the mass of the sun.

    Recent VLBI observations have shown that the size of the radio emission of Sgr A* is less than that contained within the orbit of Mercury. Combining this volume available to Sgr A* with the lower limit to its mass yields a staggeringly high density. This density is within a factor of less than 10 of the ultimate limit for a black hole. At such an extreme density, the evidence is overwhelming that Sgr A* is a supermassive black hole.

    These discoveries are elegant for their directness and simplicity. Orbits of stars provide an absolutely clear and unequivocal proof of a great unseen mass concentration. Finding that the compact radio source Sgr A* is at the precise location of the unseen mass and is motionless provides even more compelling evidence for a supermassive black hole. Together they form a simple, unique demonstration that the fantastic concept of a supermassive black hole is indeed a reality. John Michell and Pierre-Simon Laplace would be astounded to learn that their conjectures about black holes not only turned out to be correct, but were far grander than they ever could have imagined.

    Mark J. Reid is a senior astronomer at the Center for Astrophysics, Harvard & Smithsonian. He uses radio telescopes across the globe simultaneously to obtain the highest resolution images of newborn and dying stars, as well as black holes.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

  • richardmitnick 3:46 pm on October 30, 2018 Permalink | Reply
    Tags: Andrea Ghez/Keck Observatory/UCLA Galactic Center Group, , Dame Susan Jocelyn Bell Burnell and pulsars, , , , , , Reinhard Genzel of the Max Planck Institute for Extraterrestrial Physics, S0-2, , ,   

    From The New York Times: “Trolling the Monster in the Heart of the Milky Way” 

    New York Times

    From The New York Times

    Oct. 30, 2018
    Dennis Overbye

    In a dark, dusty patch of sky in the constellation Sagittarius, a small star, known as S2 or, sometimes, S0-2, cruises on the edge of eternity. Every 16 years, it passes within a cosmic whisker of a mysterious dark object that weighs some 4 million suns, and that occupies the exact center of the Milky Way galaxy.

    Star S0-2 Keck/UCLA Galactic Center Group

    For the last two decades, two rival teams of astronomers, looking to test some of Albert Einstein’s weirdest predictions about the universe, have aimed their telescopes at the star, which lies 26,000 light-years away. In the process, they hope to confirm the existence of what astronomers strongly suspect lies just beyond: a monstrous black hole, an eater of stars and shaper of galaxies.

    For several months this year, the star streaked through its closest approach to the galactic center, producing new insights into the behavior of gravity in extreme environments, and offering clues to the nature of the invisible beast in the Milky Way’s basement.

    One of those teams, an international collaboration based in Germany and Chile, and led by Reinhard Genzel, of the Max Planck Institute for Extraterrestrial Physics, say they have found the strongest evidence yet that the dark entity is a supermassive black hole, the bottomless grave of 4.14 million suns.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo

    ESO VLT 4 lasers on Yepun

    The evidence comes in the form of knots of gas that appear to orbit the galactic center. Dr. Genzel’s team found that the gas clouds circle every 45 minutes or so, completing a circuit of 150 million miles at roughly 30 percent of the speed of light. They are so close to the alleged black hole that if they were any closer they would fall in, according to classical Einsteinian physics.

    Astrophysicists can’t imagine anything but a black hole that could be so massive, yet fit within such a tiny orbit.

    The results provide “strong support” that the dark thing in Sagittarius “is indeed a massive black hole,” Dr. Genzel’s group writes in a paper that will be published on Wednesday under the name of Gravity Collaboration, in the European journal Astronomy & Astrophysics.

    “This is the closest yet we have come to see the immediate zone around a supermassive black hole with direct, spatially resolved techniques,” Dr. Genzel said in an email.

    Reinhard Genzel runs the Max Planck Institute for Extraterrestrial Physics in Munich. He has been watching S2, in the constellation Sagittarius, hoping it will help confirm the existence of a supermassive black hole.Credit Ksenia Kuleshova for The New York Times.

    The work goes a long way toward demonstrating what astronomers have long believed, but are still at pains to prove rigorously: that a supermassive black hole lurks in the heart not only of the Milky Way, but of many observable galaxies. The hub of the stellar carousel is a place where space and time end, and into which stars can disappear forever.

    The new data also help to explain how such black holes can wreak havoc of a kind that is visible from across the universe. Astronomers have long observed spectacular quasars and violent jets of energy, thousands of light-years long, erupting from the centers of galaxies.

    Roger Blandford, the director of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, said that there is now overwhelming evidence that supermassive black holes are powering such phenomena.

    “There is now a large burden of proof on claims to the contrary,” he wrote in an email. “The big questions involve figuring out how they work, including disk and jets. It’s a bit like knowing that the sun is a hot, gaseous sphere and trying to understand how the nuclear reactions work.”

    Images of different galaxies — some of which have evocative names like the Black Eye Galaxy, bottom left, or the Sombrero Galaxy, second left — adorn a wall at the Max Planck Institute.Credit Ksenia Kuleshova for The New York Times.

    Sheperd Doeleman, a radio astronomer at the Harvard-Smithsonian Center for Astrophysics, called the work “a tour de force.” Dr. Doeleman studies the galactic center and hopes to produce an actual image of the black hole, using a planet-size instrument called the Event Horizon Telescope.

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array, Chile

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    NSF CfA Greenland telescope

    Greenland Telescope

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    The study is also a major triumph for the European Southern Observatory, a multinational consortium with headquarters in Munich and observatories in Chile, which had made the study of S2 and the galactic black hole a major priority. The organization’s facilities include the Very Large Telescope [shown above], an array of four giant telescopes in Chile’s Atacama Desert (a futuristic setting featured in the James Bond film “Quantum of Solace”), and the world’s largest telescope, the Extremely Large Telescope, now under construction on a mountain nearby.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    Einstein’s bad dream

    Black holes — objects so dense that not even light can escape them — are a surprise consequence of Einstein’s general theory of relativity, which ascribes the phenomenon we call gravity to a warping of the geometry of space and time. When too much matter or energy are concentrated in one place, according to the theory, space-time can jiggle, time can slow and matter can shrink and vanish into those cosmic sinkholes.

    Einstein didn’t like the idea of black holes, but the consensus today is that the universe is speckled with them. Many are the remains of dead stars; others are gigantic, with the masses of millions to billions of suns. Such massive objects seem to anchor the centers of virtually every galaxy, including our own. Presumably they are black holes, but astronomers are eager to know whether these entities fit the prescription given by Einstein’s theory.

    Andrea Ghez, astrophysicist and professor at the University of California, Los Angeles, who leads a team of scientists observing S2 for evidence of a supermassive black hole UCLA Galactic Center Group

    Although general relativity has been the law of the cosmos ever since Einstein devised it, most theorists think it eventually will have to be modified to explain various mysteries, such as what happens at the center of a black hole or at the beginning of time; why galaxies clump together, thanks to unidentified stuff called dark matter; and how, simultaneously, a force called dark energy is pushing these clumps of galaxies apart.

    Women in STEM – Vera Rubin

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster

    Coma cluster via NASA/ESA Hubble

    But most of the real work was done by Vera Rubin

    Fritz Zwicky from http:// palomarskies.blogspot.com

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)

    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    Dark Energy Survey

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    The existence of smaller black holes was affirmed two years ago, when the Laser Interferometer Gravitational-Wave Observatory, or LIGO, detected ripples in space-time caused by the collision of a pair of black holes located a billion light-years away.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    ESA/eLISA the future of gravitational wave research

    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    But those black holes were only 20 and 30 times the mass of the sun; how supermassive black holes behave is the subject of much curiosity among astronomers.

    “We already know Einstein’s theory of gravity is fraying around the edges,” said Andrea Ghez, a professor at the University of California, Los Angeles. “What better places to look for discrepancies in it than a supermassive black hole?” Dr. Ghez is the leader of a separate team that, like Dr. Genzel’s, is probing the galactic center. “What I like about the galactic center is that you get to see extreme astrophysics,” she said.

    Despite their name, supermassive black holes are among the most luminous objects in the universe. As matter crashes down into them, stupendous amounts of energy should be released, enough to produce quasars, the faint radio beacons from distant space that have dazzled and baffled astronomers since the early 1960s.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Astronomers have long suspected that something similar could be happening at the center of the Milky Way, which is marked by a dim source of radio noise called Sagittarius A* (pronounced Sagittarius A-star).

    Sgr A* from ESO VLT

    SgrA* NASA/Chandra

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    But the galactic center is veiled by dust, making it all but invisible to traditional astronomical ways of seeing.

    Seeing in the dark

    Reinhard Genzel grew up in Freiburg, Germany, a small city in the Black Forest. As a young man, he was one of the best javelin throwers in Germany, even training with the national team for the 1972 Munich Olympics. Now he is throwing deeper.

    He became interested in the dark doings of the galactic center back in the 1980s, as a postdoctoral fellow at the University of California, Berkeley, under physicist Charles Townes, a Nobel laureate and an inventor of lasers. “I think of myself as a younger son of his,” Dr. Genzel said in a recent phone conversation.

    In a series of pioneering observations in the early 1980s, using detectors that can see infrared radiation, or heat, through galactic dust, Dr. Townes, Dr. Genzel and their colleagues found that gas clouds were zipping around the center of the Milky Way so fast that the gravitational pull of about 4 million suns would be needed to keep it in orbit. But whatever was there, it emitted no starlight. Even the best telescopes, from 26,000 light years away, could make out no more than a blur.

    An image of the central Milky Way, which contains Sagittarius A*, taken by the VISTA telescope at the E.S.O.’s Paranal Observatory, mounted on a peak just next to the Very Large Telescope.CreditEuropean Southern Observatory/VVV Survey/D. Minniti/Ignacio Toledo, Martin Kornmesser

    Part of ESO’s Paranal Observatory, the VLT Survey Telescope (VISTA) observes the brilliantly clear skies above the Atacama Desert of Chile. It is the largest survey telescope in the world in visible light.
    Credit: ESO/Y. Beletsky, with an elevation of 2,635 metres (8,645 ft) above sea level

    Two advances since then have helped shed some figurative light on whatever is going on in our galaxy’s core. One was the growing availability in the 1990s of infrared detectors, originally developed for military use. Another was the development of optical techniques that could drastically increase the ability of telescopes to see small details by compensating for atmospheric turbulence. (It’s this turbulence that blurs stars and makes them twinkle.)

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

    These keen eyes revealed hundreds of stars in the galaxy’s blurry core, all buzzing around in a circle about a tenth of a light year across. One of the stars, which Dr. Genzel calls S2 and Dr. Ghez calls S-02, is a young blue star that follows a very elongated orbit and passes within just 11 billion miles of the mouth of the putative black hole every 16 years.

    During these fraught passages, the star, yanked around an egg-shaped orbit at speeds of up to 5,000 miles per second, should experience the full strangeness of the universe according to Einstein. Intense gravity on the star’s surface should slow the vibration of light waves, stretching them and making the star appear redder than normal from Earth.

    This gravitational redshift, as it is known, was one of the first predictions of Einstein’s theory. The discovery of S2 offered astronomers a chance to observe the phenomenon in the wild — within the grip of gravity gone mad, near a supermassive black hole.

    Left, calculations left out at the Max Planck Institute, viewed from above, right.Credit Ksenia Kuleshova for The New York Times

    In the wheelhouse of the galaxy

    To conduct that experiment, astronomers needed to know the star’s orbit to a high precision, which in turn required two decades of observations with the most powerful telescopes on Earth. “You need twenty years of data just to get a seat at this table,” said Dr. Ghez, who joined the fray in 1995.

    And so, the race into the dark was joined on two different continents. Dr. Ghez worked with the 10-meter Keck telescopes, located on Mauna Kea, on Hawaii’s Big Island.

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level, showing also NASA’s IRTF and NAOJ Subaru

    UCO Keck Laser Guide Star Adaptive Optics

    Dr. Genzel’s group benefited from the completion of the European Southern Observatory’s brand new Very Large Telescope [above] array in Chile.

    The European team was aided further by a new device, an interferometer named Gravity, that combined the light from the array’s four telescopes.

    ESO GRAVITY insrument on The VLTI, interferometric instrument operating in the K band, between 2.0 and 2.4 μm. It combines 4 telescope beams and is designed to peform both interferometric imaging and astrometry by phase referencing. Credit: MPE/GRAVITY team

    Designed by a large consortium led by Frank Eisenhauer of the Max Planck Institute, the instrument enabled the telescope array to achieve the resolution of a single mirror 130 meters in diameter. (The name originally was an acronym for a long phrase that included words such as “general,” “relativity,” and “interferometry,” Dr. Eisenhauer explained in an email.)

    “All of the sudden, we can see 1,000 times fainter than before,” said Dr. Genzel in 2016, when the instrument went into operation. In addition, they could track the movements of the star S2 from day to day.

    Meanwhile, Dr. Ghez was analyzing the changing spectra of light from the star, to determine changes in the star’s velocity. The two teams leapfrogged each other, enlisting bigger and more sophisticated telescopes, and nailing down the characteristics of S2. In 2012 Dr. Genzel and Dr. Ghez shared the Crafoord Prize in astronomy, an award nearly as prestigious as the Nobel. Events came to head this spring and summer, during a six-month period when S2 made its closest approach to the black hole.

    “It was exciting in the middle of April when a signal emerged and we started getting information,” Dr. Ghez said.

    On July 26, Dr. Genzel and Dr. Eisenhauer held a news conference in Munich to announce that they had measured the long-sought gravitational redshift. As Dr. Eisenhauer marked off their measurements, which matched a curve of expected results, the room burst into applause.

    “The road is wide open to black hole physics,” Dr. Eisenhauer proclaimed.

    In an email a month later, Dr. Genzel explained that detecting the gravitational redshift was only the first step: “I am usually a fairly sober, and sometimes pessimistic person. But you may sense my excitement as I write these sentences, because of these wonderful results. As a scientist (and I am 66 years old) one rarely if ever has phases this productive. Carpe Diem!”

    In early October, Dr. Ghez, who had waited to observe one more phase of the star’s trip, said her team soon would publish their own results.

    A monster in the basement

    In the meantime, Dr. Genzel was continuing to harvest what he called “this gift from nature.”

    The big break came when his team detected evidence of hot spots, or “flares,” in the tiny blur of heat marking the location of the suspected black hole. A black hole with the mass of 4 million suns should have a mouth, or event horizon, about 16 million miles across — too small for even the Gravity instrument to resolve from Earth.

    The hot spots were also too small to make out. But they rendered the central blur lopsided, with more heat on one side of the blur than the other. As a result, Dr. Genzel’s team saw the center of that blur of energy shift, or wobble, relative to the position of S2, as the hot spot went around it.

    As a result, said Dr. Genzel, “We see a little loop on the sky.” Later he added, “This is the first time we can study these important magnetic structures in a spatially resolved manner just like in a physics laboratory.”

    He speculated that the hot spots might be produced by shock waves in magnetic fields, much as solar flares erupt from the sun. But this might be an overly simplistic model, the authors cautioned in their paper. The effects of relativity turn the neighborhood around the black hole into a hall of mirrors, Dr. Genzel said: “Our statements currently are still fuzzy. We will have to learn better to reconstruct reality once we better understand exactly these mirages.”

    The star has finished its show for this year. Dr. Genzel hopes to gather more data from the star next year, as it orbits more distantly from the black hole. Additional observations in the coming years may clarify the star’s orbit, and perhaps answer other questions, such as whether the black hole was spinning, dragging space-time with it like dough in a mixer.

    But it may be hard for Dr. Genzel to beat what he has already accomplished, he said by email. For now, shrink-wrapping 4 million suns worth of mass into a volume just 45 minutes around was a pretty good feat “for a small boy from the countryside.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 11:33 am on October 15, 2018 Permalink | Reply
    Tags: Andrea Ghez/Keck Observatory/UCLA Galactic Center Group, AO-Adaptive Optics, , , , University of California   

    From Keck Observatory: “W. M. Keck Observatory Awarded NSF Grant To Develop Next-Generation Adaptive Optics System” 

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft) above sea level, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    From Keck Observatory

    Adaptive optics (AO) measures and then corrects the atmospheric turbulence using a deformable mirror that changes shape 1,000 times per second. Initially, AO relied on the light of a star that was both bright and close to the target celestial object. But there are only enough bright stars to allow AO correction in about one percent of the sky. In response, astronomers developed Laser Guide Star Adaptive Optics using a special-purpose laser to excite sodium atoms that sit in an atmospheric layer 60 miles above Earth. Exciting the atoms in the sodium layers creates an artificial “star” for measuring atmospheric distortions, which allows the AO to produce sharp images of celestial objects positioned nearly anywhere in the sky. CREDIT: W. M. Keck Observatory/Andrew Richard Hara.

    Nearly two decades after pioneering the technology on large telescopes, W. M. Keck Observatory is once again pushing the boundaries in the field of adaptive optics (AO) after receiving a powerful boost of support.

    The National Science Foundation (NSF) has awarded the Observatory funding through their Mid-Scale Innovations Program to build a next-generation AO system on the Keck I telescope. Called Keck All-Sky Precision Adaptive Optics (KAPA), this futuristic technology will deliver significantly sharper images of the universe over nearly 100 percent of the night sky.

    “This is an exciting leap forward in our quest to overcome the blurring effects of the Earth’s atmosphere,” said Principal Investigator Peter Wizinowich, chief of technical development at Keck Observatory. “Having worked toward this project for over a decade, I am pleased to see this funding come to fruition, thanks to the NSF and also to our community’s commitment to maintaining Keck Observatory’s leadership in the cutting-edge science enabled by adaptive optics.”

    KAPA is designed to investigate some of modern astronomy’s greatest mysteries, including the following KAPA key science projects:

    1.Constrain theories of dark matter, dark energy, and cosmology using gravitational lensing of distant galaxies and quasars – Project Lead Tommaso Treu, UCLA Professor of Physics and Astronomy
    2.Test General Relativity and understanding supermassive black hole interactions in the extreme environment of the Galactic Center – Project Leads Andrea Ghez, UCLA Professor of Physics and Astronomy and director of the UCLA Galactic Center Group, and Mark Morris, UCLA Professor of Physics and Astronomy and member of the UCLA Galactic Center Group
    3.Study the evolution of galaxies’ metal-content and dynamics over cosmic time using rare, highly magnified galaxies – Project Leads Shelley Wright, UC San Diego Assistant Professor of Physics, and Claire Max, director of the University of California Observatories
    4.Find and study newly formed planets around nearby young stars via direct imaging and spectroscopy – Project Leads Michael Liu, Astronomer at University of Hawaii Institute of Astronomy, and Dimitri Mawet, Caltech Associate Professor of Astronomy

    The KAPA leadership team also includes UC Berkeley Assistant Professor Jessica Lu as Project Scientist and Keck Observatory Senior Engineer Jason Chin as Project Manager.

    In keeping with Keck Observatory’s guiding principle of sharing important new knowledge, all scientific data will be publicly released to ensure the U.S. community is provided with a valuable scientific legacy.

    “This revolutionary system will significantly expand Keck Observatory’s scientific reach,” said Co-Principal Investigator Andrea Ghez, director of the UCLA Galactic Center Group.

    Andrea Ghez, UCLA Galactic Center Group

    SO-2 Image UCLA Galactic Center Groupe via S. Sakai and Andrea Ghez at Keck Observatory

    “KAPA will also serve as an intellectual springboard for the coming generation of extremely large telescopes. We are developing KAPA in partnership with the Thirty Meter Telescope, Giant Magellan Telescope, and European Extremely Large Telescope (ELT) so they can be well-prepared when the time comes to build their own AO instrumentation.”

    TMT-Thirty Meter Telescope, proposed and now approved for Mauna Kea, Hawaii, USA4,207 m (13,802 ft) above sea level

    Giant Magellan Telescope, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    Next-generation technology like KAPA will require next-generation expertise. As such, the KAPA team is also placing a priority on the broader impact goals of education and workforce development.

    Young scientists and engineers will be recruited to help develop KAPA and the KAPA science programs. The project will engage:

    four Hawaii college student interns from the Akamai Workforce Initiative program
    four graduate and post-doctoral students from the Keck Visiting Scholars Program
    four KAPA post-doctoral scholars

    All students and young researchers will receive mentoring and hands-on work experience. The KAPA team will also launch a new summer school focused on astronomy technology and instrumentation for about 25 undergraduate and graduate students every summer over the course of the five-year project.

    “We need more people trained in instrumentation, in particular women and other groups underrepresented in the field,” said Lisa Hunter, director of the Institute for Scientist & Engineer Educators at UC Santa Cruz and a member of the KAPA team. “This project will launch an innovative new effort to build a more diverse instrumentation workforce.”

    “We are excited by this opportunity to keep Keck Observatory at the forefront of high angular resolution science and to continue to advance the state-of-the-art in adaptive optics,” said Hilton Lewis, director of Keck Observatory. “Sharing our knowledge with the next generation of scientists and engineers is very important to us, for it is they who will continue the vital work of utilizing and continuing to develop the most scientifically-productive AO system in the world.”

    AO is a technique used to correct the distortion of astronomical images caused by the turbulence in the Earth’s atmosphere. This is done using lasers to create an artificial star anywhere in the sky, fast sensors to measure the atmospheric blurring, and a deformable mirror to correct for it – all done about 1000 times per second. The goal is to study the finest detail possible by largely removing the blurring effect of the atmosphere. It allows ground-based telescopes to match and even exceed the performance of space-based telescopes at much more modest costs.

    To further improve the clarity of these images, the KAPA project will upgrade the current system by replacing key components: the Keck I laser, the computer that calculates the real-time corrections, and the camera that measures the atmospheric turbulence. The laser beam will be divided into three laser guide stars to fully sample the atmosphere above the telescope using a technique called laser tomography.

    The project also includes upgrades to a near-infrared tip-tilt sensor to improve sky coverage and a technique called point spread function reconstruction that will optimize the value of the science data obtained with the accompanying science instrument (an integral field spectrograph and imager called OSIRIS).

    The KAPA project launched in September and is expected to be completed in 2023.


    W. M. Keck Observatory is a distinguished leader in the field of adaptive optics (AO), a breakthrough technology that removes the distortions caused by the turbulence in the Earth’s atmosphere. Keck Observatory pioneered the astronomical use of both natural guide star (NGS) and laser guide star adaptive optics (LGS AO) on large telescopes and current systems now deliver images three to four times sharper than the Hubble Space Telescope. Keck AO has imaged the four massive planets orbiting the star HR8799, measured the mass of the giant black hole at the center of our Milky Way Galaxy, discovered new supernovae in distant galaxies, and identified the specific stars that were their progenitors. Support for this technology was generously provided by the Bob and Renee Parsons Foundation, Change Happens Foundation, Gordon and Betty Moore Foundation, Heising-Simons Foundation, Mt. Cuba Astronomical Foundation, NASA, NSF, and W. M. Keck Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.

    Keck UCal

  • richardmitnick 8:31 am on April 27, 2018 Permalink | Reply
    Tags: Andrea Ghez/Keck Observatory/UCLA Galactic Center Group, , , , , , , Unseen siblings for Milky Way’s supermassive black hole?   

    From EarthSky: “Unseen siblings for Milky Way’s supermassive black hole?” 



    April 27, 2018
    Eleanor Imster

    Our Milky Way galaxy is known to have a supermassive black hole at its heart. Could more supermassive black holes be lurking unseen at our galaxy’s outskirts?

    Nowadays, astronomers think that nearly all large galaxies have supermassive black holes at their cores. Our own Milky Way’s central black hole is called Sgr A* (pronounced Sagittarius A-star), and it’s the focus of many fascinating studies.

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Artist’s concept of the orbit of the star S2 (sometimes S0-2), shown in light blue. In the next few months, this star is expected to plunge near a gigantic black hole in our galaxy. Image via S. Sakai/Andrea Ghez/Keck Observatory/UCLA Galactic Center Group.

    This week (April 24, 2018), astrophysicists announced the results of a new study based not on observations, but on a state-of-the-art cosmological simulation, called Romulus. The simulation showed that galaxies might contain more than one supermassive black hole. In fact, a galaxy with a mass like that of our Milky Way should host several, these scientists said. The extra supermassive black holes might “wander” throughout a galaxy, remaining far from its center. If it’s true, then could our own Milky Way galaxy’s supermassive black hole have an unseen sibling or two?

    How did these extra supermassive black holes get into the Milky Way? These scientists – led by Michael Tremmel at Yale – think the sibling black holes, if they exist, indicate mergers between our Milky Way and other galaxies in the early universe. If a smaller galaxy joined ours, it might have deposited its own central supermassive black hole within our galaxy. When the universe was young, this might have happened several times.

    The new study was published April 24 in the Astrophysical Journal, a peer-reviewed journal. Tremmel was speaking of the computer simulation when he said:

    “In this study, we’re looking at how supermassive black holes move through their galaxies. If we look at massive galaxies the size of the Milky Way, we find that, on average, these galaxies host several supermassive black holes within them, wandering about the galaxy on scales of several thousand light-years from the center of the galaxy.”

    So, theoretically, multiple supermassive black holes – wandering supermassive black holes – within galaxies are possible. But no one has yet discovered them. Tremmel said that, in the next several decades, gravitational wave telescopes in space should be able to detect the black hole mergers that would cause galaxies to have more than one supermassive black hole. Perhaps this is a normal part of galaxy evolution.

    Could we find one of our Milky Way’s sibling black holes now? Probably not. Tremmel said that, since wandering supermassive black holes are predicted to exist far from the centers of galaxies and outside of galactic disks, they’re unlikely to be accreting more gas. Since it’s the accretion of matter that causes all the observable activity near a black hole, any sibling supermassive black holes for our Milky Way or other galaxies would effectively be invisible. Tremmel said:

    “We are currently working to better quantify how we might be able to infer their presence indirectly.”

    If they exist, could unseen supermassive black holes in our Milky Way galaxy somehow affect us? No. Tremmel explained:

    “It is extremely unlikely that any wandering supermassive black hole will come close enough to our sun to have any impact on our solar system. We estimate that a close approach of one of these wanderers that is able to affect our solar system should occur every 100 billion years or so, or nearly 10 times the age of the universe.”

    An extremely unlikely encounter indeed!

    Bottom line: Astronomers ran a sophisticated computer simulation called Romulus to learn that galaxies like our Milky Way might contain multiple supermassive black holes. Thus our Milky Way’s central supermassive black hole might have unseen siblings.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: