Tagged: ALMA(CL) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:28 pm on August 1, 2021 Permalink | Reply
    Tags: , ALMA(CL), , , , , NGC 3258-a massive elliptical galaxy about 100 million light-years from Earth., ,   

    From ALMA(CL) via SciTechDaily : “ALMA Dives into Black Hole’s Sphere of Influence” 

    From ALMA(CL)/ European Southern Observatory/National Radio Astronomy Observatory(US)/National Astronomical Observatory of Japan(JP)

    via

    SciTechDaily

    7 August, 2019 [Originally presented by NRAO, re-issued here 8.1.21 by ALMA via SciTechDaily]

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL)
    European Southern Observatory(EU)
    National Astronomical Observatory of Japan(JP)
    National Radio Astronomy Observatory(US)

    1
    Artist impression of disk of material rotating around a supermassive black hole. Credit: NRAO/Associated Universities Inc (US)/National Science Foundation (US).

    What happens inside a black hole stays inside a black hole, but what happens inside a black hole’s “sphere of influence” – the innermost region of a galaxy where a black hole’s gravity is the dominant force – is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

    New observations with the Atacama Large Millimeter/submillimeter Array (ALMA) provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole. This disk lies at the center of NGC 3258-a massive elliptical galaxy about 100 million light-years from Earth. Based on these observations, a team led by astronomers from Texas A&M University (US) and The University of California-Irvine (US), have determined that this black hole weighs a staggering 2.25 billion solar masses, the most massive black hole measured with ALMA to date.

    Though supermassive black holes can have masses that are millions to billions of times that of the Sun, they account for just a small fraction of the mass of an entire galaxy. Isolating the influence of a black hole’s gravity from the stars, interstellar gas, and dark matter in the galactic center is challenging and requires highly sensitive observations on phenomenally small scales.

    “Observing the orbital motion of material as close as possible to a black hole is vitally important when accurately determining the black hole’s mass.” said Benjamin Boizelle, a postdoctoral researcher at Texas A&M University and lead author on the study appearing in The Astrophysical Journal. “These new observations of NGC 3258 demonstrate ALMA’s amazing power to map the rotation of gaseous disks around supermassive black holes in stunning detail.”

    Astronomers use a variety of methods to measure black hole masses. In giant elliptical galaxies, most measurements come from observations of the orbital motion of stars around the black hole, taken in visible or infrared light. Another technique, using naturally occurring water masers (radio-wavelength lasers) in gas clouds orbiting around black holes, provides higher precision, but these masers are very rare and are associated almost exclusively with spiral galaxies having smaller black holes.

    During the past few years, ALMA has pioneered a new method to study black holes in giant elliptical galaxies. About 10 percent of elliptical galaxies contain regularly rotating disks of cold, dense gas at their centers. These disks contain carbon monoxide (CO) gas, which can be observed with millimeter-wavelength radio telescopes.

    By using the Doppler shift of the emission from CO molecules, astronomers can measure the velocities of clouds, and ALMA makes it possible to resolve the very centers of galaxies where the orbital speeds are highest.

    “Our team has been surveying nearby elliptical galaxies with ALMA for several years to find and study disks of molecular gas rotating around giant black holes,” said Aaron Barth of UC Irvine, a co-author on the study. “NGC 3258 is the best target we’ve found, because we’re able to trace the disk’s rotation closer to the black hole than in any other galaxy.”

    Just as the Earth orbits around the Sun faster than Pluto does because it experiences a stronger gravitational force, the inner regions of the NGC 3258 disk orbit faster than the outer parts due to the black hole’s gravity. The ALMA data show that the disk’s rotation speed rises from 1 million kilometers per hour at its outer edge, about 500 light-years from the black hole, to well over 3 million kilometers per hour near the disk’s center at a distance of just 65 light-years from the black hole.

    The researchers determined the black hole’s mass by modeling the disk’s rotation, accounting for the additional mass of the stars in the galaxy’s central region and other details such as the slightly warped shape of the gaseous disk. The clear detection of rapid rotation enabled the researchers to determine the black hole’s mass with a precision better than one percent, although they estimate an additional systematic 12 percent uncertainty in the measurement because the distance to NGC 3258 is not known very precisely. Even accounting for the uncertain distance, this is one of the most highly precise mass measurements for any black hole outside of the Milky Way galaxy.

    “The next challenge is to find more examples of near-perfect rotating disks like this one so that we can apply this method to measure black hole masses in a larger sample of galaxies,” concluded Boizelle. “Additional ALMA observations that reach this level of precision will help us better understand the growth of both galaxies and black holes across the age of the universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA)(CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 1:14 pm on June 23, 2021 Permalink | Reply
    Tags: "Mind the Gap- Scientists Use Stellar Mass to Link Exoplanets to Planet-Forming Disks", ALMA(CL), , , , , ,   

    From ALMA(CL) : “Mind the Gap- Scientists Use Stellar Mass to Link Exoplanets to Planet-Forming Disks” 

    From ALMA(CL)/ European Southern Observatory/National Radio Astronomy Observatory(US)/National Astronomical Observatory of Japan(JP)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org
    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL)
    European Southern Observatory(EU)
    National Astronomical Observatory of Japan(JP)
    National Radio Astronomy Observatory(US)

    1
    Protoplanetary disks are classified into three main categories: transition, ring, or extended. These false-color images from the Atacama Large Millimeter/submillimeter Array (ALMA) show these classifications in stark contrast. On left: the ring disk of RU Lup is characterized by narrow gaps thought to be carved by giant planets with masses ranging between a Neptune mass and a Jupiter mass. Middle: the transition disk of J1604.3-2130 is characterized by a large inner cavity thought to be carved by planets more massive than Jupiter, also known as Super-Jovian planets. On right: the compact disk of Sz104 is believed not to contain giant planets, as it lacks the telltale gaps and cavities associated with the presence of giant planets. Credit: S. Dagnello (NRAO) ALMA (ESO/NAOJ/NRAO).

    Using data for more than 500 young stars observed with the Atacama Large Millimeter/submillimeter Array (ALMA), scientists have uncovered a direct link between protoplanetary disk structures—the planet-forming disks that surround stars—and planet demographics. The survey proves that higher mass stars are more likely to be surrounded by disks with “gaps” in them and that these gaps directly correlate to the high occurrence of observed giant exoplanets around such stars. These results provide scientists with a window back through time, allowing them to predict what exoplanetary systems looked like through each stage of their formation.

    “We found a strong correlation between gaps in protoplanetary disks and stellar mass, which can be linked to the presence of large, gaseous exoplanets,” said Nienke van der Marel, a Banting fellow in the Department of Physics and Astronomy at the University of Victoria (CA) in British Columbia (CA), and the primary author on the research. “Higher mass stars have relatively more disks with gaps than lower mass stars, consistent with the already known correlations in exoplanets, where higher mass stars more often host gas-giant exoplanets. These correlations directly tell us that gaps in planet-forming disks are most likely caused by giant planets of Neptune mass and above.”

    Gaps in protoplanetary disks have long been considered as overall evidence of planet formation. However, there has been some skepticism due to the observed orbital distance between exoplanets and their stars. “One of the primary reasons that scientists have been skeptical about the link between gaps and planets before is that exoplanets at wide orbits of tens of astronomical units are rare. However, exoplanets at smaller orbits, between one and ten astronomical units, are much more common,” said Gijs Mulders, assistant professor of astronomy at Universidad Adolfo Ibáñez in Santiago, Chile, and co-author on the research. “We believe that planets that clear the gaps will migrate inwards later on.”

    The new study is the first to show that the number of gapped disks in these regions matches the number of giant exoplanets in a star system. “Previous studies indicated that there were many more gapped disks than detected giant exoplanets,” said Mulders. “Our study shows that there are enough exoplanets to explain the observed frequency of the gapped disks at different stellar masses.”

    The correlation also applies to star systems with low-mass stars, where scientists are more likely to find massive rocky exoplanets, also known as Super-Earths. Van der Marel, who will become an assistant professor at Leiden University in the Netherlands beginning September 2021 said, “Lower mass stars have more rocky Super-Earths—between an Earth mass and a Neptune mass. Disks without gaps, which are more compact, lead to the formation of Super-Earths.”

    This link between stellar mass and planetary demographics could help scientists identify which stars to target in the search for rocky planets throughout the Milky Way. “This new understanding of stellar mass dependencies will help to guide the search for small, rocky planets like Earth in the solar neighborhood,” said Mulders, who is also a part of the NASA-funded Alien Earths team. “We can use the stellar mass to connect the planet-forming disks around young stars to exoplanets around mature stars. When an exoplanet is detected, the planet-forming material is usually gone. So the stellar mass is a ‘tag’ that tells us what the planet-forming environment might have looked like for these exoplanets.”

    And what it all comes down to is dust. “An important element of planet formation is the influence of dust evolution,” said van der Marel. “Without giant planets, dust will always drift inwards, creating the optimal conditions for the formation of smaller, rocky planets close to the star.”

    The current research was conducted using data for more than 500 objects observed in prior studies using ALMA’s high-resolution Band 6 and Band 7 antennas. At present, ALMA is the only telescope that can image the distribution of millimeter-dust at high enough angular resolution to resolve the dust disks and reveal its substructure, or lack thereof. “Over the past five years, ALMA has produced many snapshot surveys of nearby star-forming regions resulting in hundreds of measurements of disk dust mass, size, and morphology,” said van der Marel. “The large number of observed disk properties has allowed us to make a statistical comparison of protoplanetary disks to the thousands of discovered exoplanets. This is the first time that a stellar mass dependency of gapped disks and compact disks has been successfully demonstrated using the ALMA telescope.”

    “Our new findings link the beautiful gap structures in disks observed with ALMA directly to the properties of the thousands of exoplanets detected by the NASA Kepler mission and other exoplanet surveys,” said Mulders. “Exoplanets and their formation help us place the origins of the Earth and the Solar System in the context of what we see happening around other stars.”

    Additional Information

    The results of this research appeared as “A stellar mass dependence of structured disks: a possible link with exoplanet demographics” by N. van der Marel et al. in The Astrophysical Journal.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA)(CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Small
    ESO 50 Large

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

     
  • richardmitnick 7:04 pm on March 29, 2021 Permalink | Reply
    Tags: "Stellar Eggs near Galactic Center Hatching into Baby Stars", ALMA(CL), , , , , ,   

    From ALMA(CL) : “Stellar Eggs near Galactic Center Hatching into Baby Stars” 

    From ALMA(CL)

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    Dave Finley
    Public Information Officer
    Karl G. Jansky Very Large Array (VLA)
    Phone: 1 575.835-7302
    Email: dfinley@nrao.edu

    All general references:
    ALMA Observatory (CL) (European Southern Observatory(EU)/National Astronomical Observatory of Japan(JP)/National Radio Astronomy Observatory(US))

    1
    ALMA pseudo-color composite image of the gas outflows from baby stars in the Galactic Center region. Gas moving toward us is shown in blue and gas moving away from us is shown in red. Credit: From ALMA(CL), Lu et al.

    Astronomers found a number of baby stars hiding around the center of the Milky Way using the Atacama Large Millimeter/submillimeter Array (ALMA). Previous studies had suggested that the environment there is too harsh to form stars because of the strong tidal forces, strong magnetic fields, high energy particles, and frequent supernova explosions. These findings indicate that star formation is more resilient than researchers thought. These observations suggest there is ubiquitous star formation activity hidden deep in dense molecular gas, which may allow for the possibility of a future burst of star formation around the Galactic Center.

    “It is like hearing babies’ cries in a place we expected to be barren,” says Xing Lu, an astronomer at the NAOJ. “It is very difficult for babies to be born and grow up healthily in an environment that is too noisy and unstable. However, our observations prove that even in the strongly disturbed areas around the Galactic Center, baby stars still form.”

    Stars are formed in cosmic clouds gathered by gravity. If something interferes with the gravity driven processes, star formation will be suppressed. There are many potential sources of interference in the Central Molecular Zone (CMZ) of the Milky Way, located within a radius of 1000 light-years from the Galactic Center. Examples include strong turbulence which stirs up the clouds and prevents them from contracting, or strong magnetic fields can support the gas against self-gravitational collapse. In fact, previous observations indicated that star formation here is much less efficient; with the exception of one active star forming region called Sagittarius B2 (Sgr B2).

    Lu and his colleagues used ALMA to tackle the mystery of suppressed star formation in most of the CMZ. The target regions contain an ample amount of gas, but no star formation has been expected. Contrary to the traditional picture, the team discovered more than 800 dense cores of gas and dust particles in the CMZ. “The discovery leads to the question of whether they are actually ‘stellar eggs’ or not,” says Lu. To look for telltale signs of star formation indicative of stellar eggs, the team again used ALMA to search for energetic gas outflows, which are like the birth cries of baby stars. Thanks to ALMA’s high sensitivity and high spatial resolution, for the first time, they detected 43 small and faint outflows in the clouds. This is unambiguous evidence of ongoing star formation. It turned out that many baby stars were hiding in the regions that were thought to be unsuitable for stellar growth.

    The small number of detected outflows is another mystery. Considering the fact that more than 800 “stellar eggs” have been found, the small number of “stellar babies” might indicate that the star formation activity in the CMZ is in the very early phase. “Although a large number of outflows might be still hidden in the regions, our results may suggest we are seeing the beginning of the next wave of active star formation,” says Lu.

    “Although previous observations have suggested that overall star formation rates are suppressed to about 10% in the giant molecular clouds in the Galactic Center, this observation shows that the star formation processes hidden in dense molecular gas clouds are not very different from those of the Solar neighborhood,” explains Shu-ichiro Inutsuka, a professor at Nagoya University [名古屋大学; Nagoya daigaku](JP) and a co-author of the research paper. “The ratio of the number of star-forming cores to star-less cores seems to be only a few times smaller than that in the Solar neighborhood. This can be regarded as the ratio of their respective lifetimes. We think that the average duration of the star-less core stage in the Galactic Center might be somewhat longer than in the Solar neighborhood. More research is needed to explain why it is so.”

    The research team is now analyzing ALMA’s higher resolution observation data for the CMZ and aims to study the properties of the accretion disks around the baby stars which drive the gas outflows. By comparing with other star forming regions, they hope to better understand star formation in the CMZ, from clouds to protostars, and from chemistry to magnetic fields.

    Additional Information

    These observation results were presented in Xing Lu et al. “ALMA Observations of Massive Clouds in the Central Molecular Zone: Ubiquitous Protostellar Outflows” in The Astrophysical Journal on March 16, 2021.

    This research was supported by the Japan Society of Promotion of Science (JSPS) KAKENHI (No. 18K13589 & 20K14528), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through an Emmy Noether Research Group (grant number KR4801/1-1), the DFG Sachbeihilfe (grant number KR4801/2-1), the SFB 881 “The Milky Way System” (subproject B2), the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and the National Science Foundation under Award No. 1816715.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA)(CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by European Southern Observatory(EU), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (US) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

    The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer of 66 radio telescopes in the Atacama Desert of northern Chile, which observe electromagnetic radiation at millimeter and submillimeter wavelengths. The array has been constructed on the 5,000 m (16,000 ft) elevation Chajnantor plateau – near the Llano de Chajnantor Observatory and the ESO Atacama Pathfinder Experiment (CL). This location was chosen for its high elevation and low humidity, factors which are crucial to reduce noise and decrease signal attenuation due to Earth’s atmosphere. ALMA provides insight on star birth during the early Stelliferous era and detailed imaging of local star and planet formation.

    ALMA is an international partnership among Europe, the United States, Canada, Japan, South Korea, Taiwan, and Chile. Costing about US$1.4 billion, it is the most expensive ground-based telescope in operation. ALMA began scientific observations in the second half of 2011 and the first images were released to the press on 3 October 2011. The array has been fully operational since March 2013.

    Overview

    The initial ALMA array is composed of 66 high-precision antennas, and operates at wavelengths of 3.6 to 0.32 millimeters (31 to 1000 GHz). The array has much higher sensitivity and higher resolution than earlier submillimeter telescopes such as the single-dish James Clerk Maxwell Telescope or existing interferometer networks such as the Submillimeter Array or the Institut de Radio Astronomie Millimétrique Plateau de Bure interferometer(FR) Plateau de Bure facility.

    IRAM-Institut de Radio Astronomie Millimétrique Plateau de Bure interferometer (FR) at an elevation of 2550 meters, the telescope currently consists of ten antennas, each 15 meters in diameter.interferometer, Located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters.

    The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the centimetre-wavelength Very Large Array (VLA) site in New Mexico, United States.

    The high sensitivity is mainly achieved through the large numbers of antenna dishes that will make up the array.

    The telescopes were provided by the European, North American and East Asian partners of ALMA. The American and European partners each provided twenty-five 12-meter diameter antennas, that compose the main array. The participating East Asian countries are contributing 16 antennas (four 12-meter diameter and twelve 7-meter diameter antennas) in the form of the Atacama Compact Array (ACA), which is part of the enhanced ALMA.

    By using smaller antennas than the main ALMA array, larger fields of view can be imaged at a given frequency using ACA. Placing the antennas closer together enables the imaging of sources of larger angular extent. The ACA works together with the main array in order to enhance the latter’s wide-field imaging capability.

    ALMA has its conceptual roots in three astronomical projects — the Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter Array (LMA) of Japan.

    The first step toward the creation of what would become ALMA came in 1997, when the National Radio Astronomy Observatory (NRAO) and the European Southern Observatory (ESO) agreed to pursue a common project that merged the MMA and LSA. The merged array combined the sensitivity of the LSA with the frequency coverage and superior site of the MMA. ESO and NRAO worked together in technical, science, and management groups to define and organize a joint project between the two observatories with participation by Canada and Spain (the latter became a member of ESO later).

    A series of resolutions and agreements led to the choice of “Atacama Large Millimeter Array”, or ALMA, as the name of the new array in March 1999 and the signing of the ALMA Agreement on 25 February 2003, between the North American and European parties. (“Alma” means “soul” in Spanish and “learned” or “knowledgeable” in Arabic.) Following mutual discussions over several years, the ALMA Project received a proposal from the National Astronomical Observatory of Japan (NAOJ) whereby Japan would provide the ACA (Atacama Compact Array) and three additional receiver bands for the large array, to form Enhanced ALMA. Further discussions between ALMA and NAOJ led to the signing of a high-level agreement on 14 September 2004 that makes Japan an official participant in Enhanced ALMA, to be known as the Atacama Large Millimeter/submillimeter Array. A groundbreaking ceremony was held on November 6, 2003 and the ALMA logo was unveiled.

    During an early stage of the planning of ALMA, it was decided to employ ALMA antennas designed and constructed by known companies in North America, Europe, and Japan, rather than using one single design. This was mainly for political reasons. Although very different approaches have been chosen by the providers, each of the antenna designs appears to be able to meet ALMA’s stringent requirements. The components designed and manufactured across Europe were transported by specialist aerospace and astrospace logistics company Route To Space Alliance, 26 in total which were delivered to Antwerp for onward shipment to Chile.

    Partners

    European Southern Observatory (EU) and the European Regional Support Centre
    National Science Foundation (US) via the National Radio Astronomy Observatory (US) and the North American ALMA Science Center (US)
    National Research Council Canada [Conseil national de recherches Canada] (CA)
    National Astronomical Observatory of Japan (JP) under the National Institute of Natural Sciences (自然科学研究機構, Shizenkagaku kenkyuukikou) (JP)
    ALMA-Taiwan at the Academia Sinica Institute of Astronomy & Astrophysics [中央研究院天文及天文物理研究所](TW)
    Republic of Chile

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: