Tagged: ALMA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:54 am on June 15, 2017 Permalink | Reply
    Tags: ALMA, Astronomers make models to see how differences in age, , , , , Many of the nitrogen molecules are poisonous cyanides, Mass, Multiple stars forming at the same time in one disk, Nitrogen-containing molecules in the southeastern part of the disk, , temperature or gas density can cause a difference in chemical composition   

    From SRON: “Astronomers see mysterious nitrogen area in a butterfly-shaped star formation disk” 

    sron-bloc
    SRON

    15 June 2017
    Veronica Allen

    1
    An international team of astronomers, led by Dutch scientists, has discovered a region in our Milky Way that contains many nitrogen compounds in the southeast of a butterfly-shaped star formation disk and very little in the north-west. This artistic impression shows the universe around the star formation area with, as an overlay, the scientists’ observations. (c) Veronica Allen/Alexandra Elconin (http://alsewhere.weebly.com)

    An international team of astronomers, led by Dutch scientists, has discovered a region in our Milky Way that contains many nitrogen compounds in the southeast of a butterfly-shaped star formation disk and very little in the north-west. The astronomers suspect that multiple stars-to-be share the same star formation disk, but the precise process is still a puzzle. The article with their findings has been accepted for publication in Astronomy & Astrophysics.

    An international team of astronomers studied the star forming region G35.20-0.74N, more than 7000 light years from Earth in the southern sky. The astronomers used the (sub)millimeter telescope ALMA that is based on the Chilean Chajnantor plateau. ALMA can map molecular gas clouds in which stars form.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    The researchers saw something special in the disk around a young, heavy star. While large amounts of oxygen-containing and sulfur-containing hydrocarbons were present throughout the disk, the astronomers found only nitrogen-containing molecules in the southeastern part of the disk. In addition, it was 150 degrees warmer on the nitrogen side than on the other side of the disk.

    Based on these observations, the scientists suspect that there are multiple stars forming at the same time in one disk and that some stars are hotter or heavier than others. The researchers expect the disk to eventually break into several smaller disks as the stars grow.

    A few years ago, there have been observed chemical differences in a star forming region in Orion. First author Veronica Allen (University of Groningen and SRON): “The area in Orion is five times bigger than our area. We have probably been lucky because we expect that such a chemical difference to be short-lived.”

    Second author Floris van der Tak (University of Groningen and SRON): “Many of the nitrogen molecules are poisonous cyanides. We do not know much about them because it is dangerous to work with those molecules in laboratories on earth.”

    The astronomers are now investigating the star formation cloud in more detail. Allen: “Maybe we can see the disk break into smaller disks in real time.” In addition, the astronomers make models to see how differences in age, mass, temperature or gas density can cause a difference in chemical composition, too.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    sron-campus

    How did the Earth and life on it evolve? How do stars and planets evolve? How did the universe evolve? What is the position of the Earth and humankind in that immense universe? These are fundamental questions that have always intrigued humankind. Moreover, people have always possessed an urge to explore and push back the boundaries of science and technology.

    Science

    Since the launch of Sputnik in 1957, Dutch astronomers have seen the added value of space missions for science. Reaching beyond the Earth’s atmosphere would open up new windows on the universe and provide fantastic views of our home planet. It would at last be possible to pick up cosmic radiation that never normally reached the Earth’s surface, such as X-rays, ultraviolet and infrared radiation. A wealth of scientific information from every corner of the universe would then become available.

    The first Dutch scientific rocket experiments and contributions to European and American satellites in the early 1960s, formed the start of an activity in which a small country would develop an enviable reputation: scientific space research.

    Groundbreaking technology

    Nowadays we take for granted images of the Earth from space, beautiful photos from the Hubble Space Telescope or landings of space vehicles on nearby planets. Yet sometimes we all too easily forget that none of these scientific successes would have been possible without the people who developed groundbreaking technology. Technology that sooner or later will also prove useful to life on Earth.

     
  • richardmitnick 10:14 am on June 14, 2017 Permalink | Reply
    Tags: ALMA, , , , Chaotically Magnetized Cloud Is No Place to Build a Star or Is It?, , ,   

    From ALMA: “Chaotically Magnetized Cloud Is No Place to Build a Star, or Is It?” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    14 June 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    Artist impression of chaotic magnetic field lines very near a newly emerging protostar. Credit: NRAO/AUI/NSF; D. Berry

    For decades, scientists believed that the magnetic field lines around a forming star were extremely powerful and orderly, warping only under extreme force and at great distance from the nascent star.

    Now, a team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has discovered a weak and wildly disorganized magnetic field strikingly near a newly emerging protostar. These observations suggest that the impact of magnetic fields on star formation is more complex than previously thought.

    The researchers used ALMA to map the surprisingly disorganized magnetic field surrounding a young protostar dubbed Ser-emb 8, which resides about 1400 light-years away in the Serpens star-forming region. These new observations are the most sensitive ever made of the small-scale magnetic field suffusing the region surrounding a young forming star. They also provide important insights into the formation of low-mass stars like own sun.

    Previous observations with other telescopes have confirmed that magnetic fields surrounding some young protostars form a classic “hourglass” shape – a hallmark of a strong magnetic field – that starts near the protostar and extends many light-years into the surrounding molecular cloud.

    “Before now, we didn’t know if all stars formed in regions that were controlled by strong magnetic fields. Using ALMA, we found our answer,” said Charles L. H. “Chat” Hull, an astronomer and NRAO Jansky Fellow at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author on a paper appearing in the Astrophysical Journal Letters. “We can now study magnetic fields in star-forming clouds from the broadest of scales all the way down to the forming star itself. This is exciting because it may mean stars can emerge from a wider range of conditions than we once thought.”

    ALMA is able to study magnetic fields at the small scales inside star-forming clumps by mapping the polarization of light emitted by dust grains that have aligned themselves with the magnetic field.

    2
    Texture represents the magnetic field orientation in the region surrounding the Ser-emb 8 protostar, as measured by ALMA. The gray region is the millimeter wavelength dust emission. Credit: ALMA (ESO/NAOJ/NRAO); P. Mocz, C. Hull, CfA

    By comparing the structure of the magnetic field in the observations with cutting-edge supercomputer simulations on multiple size scales, the astronomers gained important insights into the earliest stages of magnetized star formation. The simulations – which extend from a relatively nearby 140 astronomical units from the protostar (about 4 times the distance from the sun to Pluto) to as far out as 17 light-years – were performed by CfA astronomers Philip Mocz and Blakesley Burkhart, who are coauthors on the paper.

    In the case of Ser-emb 8, the astronomers believe they have captured the original magnetic field around the protostar “red handed,” before outflowing material from the star could erase the pristine signature of the magnetic field in the surrounding molecular cloud, noted Mocz.

    “Our observations show that the importance of the magnetic field in star formation can vary widely from star to star,” concluded Hull. “This protostar seems to have formed in a weakly magnetized environment dominated by turbulence, while previous observations show sources that clearly formed in strongly magnetized environments. Future studies will reveal how common each scenario is.”

    Additional information

    This research was presented in a paper titled Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation, by C. Hull et al., appearing in the Astrophysical Journal Letters.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 1:23 pm on June 12, 2017 Permalink | Reply
    Tags: ALMA, , , Baby Star Spits a 'Spinning Jet' As It Munches Down on a 'Space Hamburger', , , HH 212, ,   

    From ALMA: “Baby Star Spits a ‘Spinning Jet’ As It Munches Down on a ‘Space Hamburger’ “ 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    12 June 2017
    Dr. Chin-Fei Lee
    Institute of Astrophysics and Astronomy
    Academia Sinica
    Tel: +886-2-2366-5445
    Email: cflee@asiaa.sinica.edu.tw

    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    Figure 1: Jet and disk in the HH 212 protostellar system: (a) Molecular jet (green image) ejected from the innermost part of the accretion disk (orange image), observed with ALMA at a resolution of 8 au. A dark lane is seen in the disk equator, causing the disk to appear as a “hamburger”. A size scale of our solar system is shown in the lower right corner for size comparison. (b) Split of the redshifted (turning away from us) and blueshifted (turning toward us) emission of the jet in order to show the spinning motion of the jet, as indicated by the green arrows. Blue and red arrows show the rotation of the disk, which has a direction the same as the jet rotation. Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al.

    Protostellar jets are seen coming out from protostars (baby stars), representing one of the most intriguing signposts of star formation. An international research team, led by Chin-Fei Lee in Academia Sinica Institute of Astronomy and Astrophysics (ASIAA, Taiwan), has made a new breakthrough observation with the Atacama Large Millimeter/submillimeter Array (ALMA), finding a protostellar jet to be spinning, convincingly for the first time. This new result confirms the expected role of the jet in removing the excess angular momentum from the innermost region of an accretion disk (space hamburger), providing a solution to the long-standing problem of how the inner accretion disk can feed a protostar.

    “We see jets coming out from most of baby stars, like a train of bullets speeding down along the rotational axis of the accretion disks. We always wonder what their role is. Are they spinning, as expected in current models of jet launching? However, since the jets are very narrow and their spinning motion is very small, we had not been able to confirm their spinning motion. Now using the ALMA with its unprecedented combination of spatial and velocity resolutions, we not only resolve a jet near a protostar down to 10 astronomical units (au) but also detect its spinning motion”, says Chin-Fei Lee at ASIAA. “It looks like a baby star spits a spinning bullet each time it takes a bite of a space hamburger.”

    “The central problem in forming a star is the angular momentum in the accretion disk which prevents material from falling into the central protostar. Now with the jet carrying away the excess angular momentum from the material in the innermost region of the disk, the material can readily fall into the central protostar from the disk”, says Paul Ho at ASIAA.

    HH 212 is a nearby protostellar system in Orion at about 1300 lightyears. The central protostar is very young with an age of only 40,000 years (which is about 10 millionth of the age of the Sun) and a mass of only a fifth of the Sun. Recent ALMA observations at submillimeter wavelength have detected an accretion disk feeding the central protostar. The disk is nearly edge-on and has a radius of about 60 au. Interestingly, it shows a prominent equatorial dark lane sandwiched between two brighter features, appearing as a “space hamburger”.

    2
    Figure 2: A 3D cartoon showing a spinning jet coming out from an accretion disk that feeds the central protostar. (Left) The jet is spinning (as shown by the green arrows), with the blue part turning toward us and the red part turning away from us. In the disk, the blue color is cooler than the orange color. (Right) A zoom-in to the innermost region, showing the possible disk accretion and jet launching processes near the protostar. Our results imply that the jet is launched at about 0.05 au, as shown by the green arrows. The jet carries away the excess angular momentum, allowing the disk material there to fall into the central protostar, as shown by the blue arrows. As in current jet models, the jet is hollow and higher resolution is needed to check it. Credit: Lee, C.-F.

    The central protostar drives a powerful bipolar jet. Previous observations at a spatial resolution of 140 au could not confirm a rotation for the jet. Now with ALMA at a resolution of 8 au, which is about 17 times higher, we zoom in to the innermost part of the jet down to within 10 au of the central protostar and find a jet rotation. The angular momentum is so small that the jet must be launched from the innermost region of the disk at about 0.05 au from the central protostar, well consistent with current models of the jet launching.

    3
    Credit: Lee, C.-F.

    This new finding indicates that the jet indeed carries away part of the angular momentum (rotational momentum) from the material in the innermost region of the accretion disk (space hamburger), which is rotating around the central protostar. This reduces the rotation of the material there, allowing the disk to feed the central protostar.

    These observations open an exciting possibility of detecting and measuring jet rotation around the protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of jet formation in star formation. In addition, these observations also open the possibility of detecting jet rotation in other kind of objects, e.g., active nuclei of galaxies, which may play the same role of extracting disk angular momentum as the protostellar jets.

    Additional information

    ALMA also clearly imaged the rotation of a gas outflow from a massive protostar. (Press release ALMA Hears Birth Cry of a Massive Baby Star).

    This research was presented in a paper A Rotating Protostellar Jet Launched from the Innermost Disk of HH 212, by Lee et al. to appear in the journal Nature Astronomy.

    The team is composed of Chin-Fei Lee (ASIAA, Taiwan; National Taiwan University, Taiwan), Paul T.P. Ho (ASIAA, Taiwan; East Asia Observatory), Zhi-Yun Li (University of Virginia, USA), Naomi Hirano (ASIAA, Taiwan), Qizhou Zhang (Harvard-Smithsonian Center for Astrophysics, USA), and Hsien Shang (ASIAA, Taiwan).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 10:38 am on June 12, 2017 Permalink | Reply
    Tags: ALMA, , , , , ,   

    From ALMA: “ALMA Observes Birth Cry of a Massive Baby Star” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    12 June 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    Figure 3. The rotation of the outflow from Orion KL Source I imaged with ALMA. The color shows the motion of the gas; red shows gas moving away from us, whereas blue shows gas moving toward us. The disk is shown in white. Credit: ALMA (ESO/NAOJ/NRAO), Hirota et al.

    An international research team used the Atacama Large Millimeter/submillimeter Array (ALMA) to determine how the enigmatic gas flow from a massive baby star is launched. The astronomers observed the baby star and obtained clear evidence of rotation in the outflow. The motion and the shape of the outflow indicate that the interplay of centrifugal and magnetic forces in a disk surrounding the star plays a crucial role in the star’s birth cry.

    Stars form from gas and dust floating in interstellar space. But, astronomers do not yet fully understand how it is possible to form the massive stars seen in space. One key issue is gas rotation. The parent cloud rotates slowly in the initial stage and the rotation becomes faster as the cloud shrinks due to self-gravity. Stars formed in such a process should have very rapid rotation, but this is not the case. The stars observed in the Universe rotate more slowly.

    How is the rotational momentum dissipated? One possible scenario involves that the gas emanating from baby stars. If the gas outflow rotates, it can carry rotational momentum away from the system. Astronomers have tried to detect the rotation of the outflow to test this scenario and understand its launching mechanism. In a few cases signatures of rotation have been found, but it has been difficult to resolve clearly, especially around massive baby stars.

    2
    Figure 1. Artist’s impression of Orion KL Source I. The massive protostar is surrounded by a disk of gas and dust. The outflow is launched from the surface of the outer disk. Credit: ALMA (ESO/NAOJ/NRAO)

    The team of astronomers led by Tomoya Hirota, an assistant professor at the National Astronomical Observatory of Japan (NAOJ) and SOKENDAI (the Graduate University for Advanced Studies) observed a massive baby star called Orion KL Source I in the famous Orion Nebula, located 1,400 light-years away from the Earth. The Orion Nebula is the closest massive-star forming region to Earth. Thanks to its close vicinity and ALMA’s advanced capabilities, the team could reveal the nature of the outflow from Source I.

    “We have clearly imaged the rotation of the outflow,” said Hirota, the lead author of the research paper published in the journal Nature Astronomy. “In addition, the result gives us important insight into the launching mechanism of the outflow.”

    The new ALMA observations beautifully illustrate the rotation of the outflow, in the same direction as the gas disk surrounding the star. This strongly supports the idea that the outflow plays an important role in dissipating the rotational energy.

    3
    Figure 2. Orion KL Source I observed with ALMA. The massive protostar is in the center and surrounded by a gas disk (red). A bipolar gas outflow is ejected from the protostar (blue). Credit: ALMA (ESO/NAOJ/NRAO), Hirota et al.

    Furthermore, ALMA clearly shows that the outflow is launched not from the vicinity of the baby star itself, but rather from the outer edge of the disk. This morphology agrees well with the “magnetocentrifugal disk wind model.” In this model, gas in the rotating disk moves outward due to the centrifugal force and then moves upward along the magnetic field lines to form outflows. Although previous observations with ALMA have found supporting evidence around a low-mass protostar, there was little compelling evidence around massive protostars because most of the massive-star forming regions are rather distant and difficult to investigate in detail.

    “In addition to high sensitivity and fidelity, high resolution submillimeter-wave observation is essential to our study, which ALMA made possible for the first time. Submillimeter waves are a unique diagnostic tool for the dense innermost region of the outflow, and at that exact place we detected the rotation,” explained Hirota. “ALMA’s resolution will become even higher in the future. We would like to observe other objects to improve our understanding of the launching mechanism of outflows and the formation scenario of massive stars with the assistance of theoretical research.”

    Additional information

    ALMA also imaged rotation of a gas jet from a low-mass protostar. Please read the press release Baby Star Spits a ‘Spinning Jet’ As It Munches -Down on a ‘Space Hamburger from the Academia Sinica Institute of Astronomy and Astrophysics, Taiwan.

    These observation results were published as Hirota et al. Disk-Driven Rotating Bipolar Outflow in Orion Source I in Nature Astronomy on June 12, 2017.

    The research team members are:

    Tomoya Hirota (National Astronomical Observatory of Japan / SOKENDAI), Masahiro Machida (Kyushu University), Yuko Matsushita (Kyushu University), Kazuhito Motogi (Yamaguchi University / NAOJ), Naoko Matsumoto (Yamaguchi University / NAOJ), Mi Kyoung Kim (Korean Astronomy and Space Science Institute), Ross A. Burns (Joint Institute for VLBI ERIC), Mareki Honma (NAOJ/SOKENDAI)

    This research was supported by Grants-in-Aid from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 21224002、 24684011、25108005、15H03646、15K17613、24540242、25120007).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 7:15 am on June 8, 2017 Permalink | Reply
    Tags: ALMA, ALMA Finds Ingredient of Life Around Infant Sun-like Stars, , , , , , Multiple star system IRAS 16293-2422, , Rho Ophiuchi   

    From ALMA: “ALMA Finds Ingredient of Life Around Infant Sun-like Stars” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    8 June 2017
    Rafael Martín-Doménech
    Centro de Astrobiología
    Madrid, Spain
    Email: rmartin@cab.inta-csic.es

    Victor Rivilla
    INAF-Osservatorio Astrofisico di Arcetri
    Italy
    Email: rivilla@arcetri.astro.it

    Audrey Coutens
    Laboratoire d’Astrophysique de Bordeaux
    France
    Email: audrey.coutens@u-bordeaux.fr

    Niels Ligterink
    Sackler Laboratory for Astrophysics, Leiden Observatory
    Netherlands
    Tel: +31 (0) 71 527 5844
    Email: ligterink@strw.leidenuniv.nl

    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    1
    ALMA has observed stars like the Sun at a very early stage in their formation and found traces of methyl isocyanate — a chemical building block of life. This is the first ever detection of this prebiotic molecule towards solar-type protostars, the sort from which our Solar System evolved. The discovery could help astronomers understand how life arose on Earth.

    Two teams of astronomers have harnessed the power of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to detect the prebiotic complex organic molecule methyl isocyanate [1] in the multiple star system IRAS 16293-2422. One team was co-led by Rafael Martín-Doménech at the Centro de Astrobiología in Madrid, Spain, and Víctor M. Rivilla, at the INAF-Osservatorio Astrofisico di Arcetri in Florence, Italy; and the other by Niels Ligterink at the Leiden Observatory in the Netherlands and Audrey Coutens at University College London, United Kingdom.

    “This star system seems to keep on giving! Following the discovery of sugars, we’ve now found methyl isocyanate. This family of organic molecules is involved in the synthesis of peptides and amino acids, which, in the form of proteins, are the biological basis for life as we know it,” explain Niels Ligterink and Audrey Coutens [2].

    ALMA’s capabilities allowed both teams to observe the molecule at several different and characteristic wavelengths across the radio spectrum [3]. They found the unique chemical fingerprints located in the warm, dense inner regions of the cocoon of dust and gas surrounding young stars in their earliest stages of evolution. Each team identified and isolated the signatures of the complex organic molecule methyl isocyanate [4]. They then followed this up with computer chemical modelling and laboratory experiments to refine our understanding of the molecule’s origin [5].

    IRAS 16293-2422 is a multiple system of very young stars, around 400 light-years away in a large star-forming region called Rho Ophiuchi in the constellation of Ophiuchus (The Serpent Bearer). The new results from ALMA show that methyl isocyanate gas surrounds each of these young stars.

    2
    The Rho Ophiuchi star formation region in the constellation of Ophiuchus

    Earth and the other planets in our Solar System formed from the material left over after the formation of the Sun. Studying solar-type protostars can therefore open a window to the past for astronomers and allow them to observe conditions similar to those that led to the formation of our Solar System over 4.5 billion years ago.

    Rafael Martín-Doménech and Víctor M. Rivilla, lead authors of one of the papers, comment: “We are particularly excited about the result because these protostars are very similar to the Sun at the beginning of its lifetime, with the sort of conditions that are well suited for Earth-sized planets to form. By finding prebiotic molecules in this study, we may now have another piece of the puzzle in understanding how life came about on our planet.”

    Niels Ligterink is delighted with the supporting laboratory results: “Besides detecting molecules we also want to understand how they are formed. Our laboratory experiments show that methyl isocyanate can indeed be produced on icy particles under very cold conditions that are similar to those in interstellar space This implies that this molecule — and thus the basis for peptide bonds — is indeed likely to be present near most new young solar-type stars.”

    Notes

    [1] A complex organic molecule is defined in astrochemistry as consisting of six or more atoms, where at least one of the atoms is carbon. Methyl isocyanate contains carbon, hydrogen, nitrogen and oxygen atoms in the chemical configuration CH3NCO. This very toxic substance was the main cause of death following the tragic Bhopal industrial accident in 1984.

    [2] The system was previously studied by ALMA in 2012 and found to contain molecules of the simple sugar glycolaldehyde, another ingredient for life.

    [3] The team led by Rafael Martín-Doménech used new and archive data of the protostar taken across a large range of wavelengths across ALMA’s receiver Bands 3, 4 and 6. Niels Ligterink and his colleagues used data from the ALMA Protostellar Interferometric Line Survey (PILS), which aims to chart the chemical complexity of IRAS 16293-2422 by imaging the full wavelength range covered by ALMA’s Band 7 on very small scales, equivalent to the size of our Solar System.

    [4] The teams carried out spectrographic analysis of the protostar’s light to determine the chemical constituents. The amount of methyl isocyanate they detected — the abundance — with respect to molecular hydrogen and other tracers is comparable to previous detections around two high-mass protostars (i.e. within the massive hot molecular cores of Orion KL and Sagittarius B2 North).

    [5] Martín-Doménech’s team chemically modelled gas-grain formation of methyl isocyanate. The observed amount of the molecule could be explained by chemistry on the surface of dust grains in space, followed by chemical reactions in the gas phase. Moreover, Ligterink’s team demonstrated that the molecule can be formed at extremely cold interstellar temperatures, down to 15 Kelvin (–258 degrees Celsius), using cryogenic ultra-high-vacuum experiments in their laboratory in Leiden.

    More information

    This research was presented in two papers: First Detection of Methyl Isocyanate (CH3NCO) in a solar-type Protostar by R. Martín-Doménech et al. and The ALMA-PILS survey: Detection of CH3NCO toward the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation, by N. F. W. Ligterink et al.. Both papers will appear in the same issue of the Monthly Notices of the Royal Astronomical Society.

    One team is composed of: R. Martín-Doménech (Centro de Astrobiología, Spain), V. M. Rivilla (INAF-Osservatorio Astrofisico di Arcetri, Italy), I. Jiménez-Serra (Queen Mary University of London, UK), D. Quénard (Queen Mary University of London, UK), L. Testi (INAF-Osservatorio Astrofisico di Arcetri, Italy; ESO, Garching, Germany; Excellence Cluster “Universe”, Germany) and J. Martín-Pintado (Centro de Astrobiología, Spain).

    The other team is composed of: N. F. W. Ligterink (Sackler Laboratory for Astrophysics, Leiden Observatory, the Netherlands), A. Coutens (University College London, UK), V. Kofman (Sackler Laboratory for Astrophysics, The Netherlands), H. S. P. Müller (Universität zu Köln, Germany), R. T. Garrod (University of Virginia, USA), H. Calcutt (Niels Bohr Institute & Natural History Museum, Denmark), S. F. Wampfler (Center for Space and Habitability, Switzerland), J. K. Jørgensen (Niels Bohr Institute & Natural History Museum, Denmark), H. Linnartz (Sackler Laboratory for Astrophysics, The Netherlands) and E. F. van Dishoeck (Leiden Observatory, The Netherlands; Max-Planck-Institut für Extraterrestrische Physik, Germany).

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

    ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA..

    See the full ALMA article here .
    See the full ESO article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 10:30 am on June 5, 2017 Permalink | Reply
    Tags: ALMA, ALMA Returns to Boomerang Nebula, , , , , ,   

    From ALMA: “ALMA Returns to Boomerang Nebula” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    05 June 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory Tokyo, Japan
    Tel: +81 422 34 3630
    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    Composite image of the Boomerang Nebula, a pre-planetary nebula produced by a dying star. ALMA observations (orange) showing the hourglass-shaped outflow, which is embedded inside a roughly round ultra-cold outflow. The hourglass outflow stretches more than three trillion kilometers from end to end (about 21,000 times the distance from the Sun to the Earth), and is the result of a jet that is being fired by the central star, sweeping up the inner regions of the ultra-cold outflow like a snow-plow. The ultra-cold outflow is about 10 times bigger. The ALMA data are shown on top of an image from the Hubble Space Telescope (blue). Credit: ALMA (ESO/NAOJ/NRAO); NASA/ESA Hubble; NRAO/AUI/NSF

    NASA/ESA Hubble Telescope

    An ancient red giant star in the throes of a frigid death has produced the coldest known object in the cosmos — the Boomerang Nebula. How this star could create an environment strikingly colder than the natural background temperature of deep space has been a compelling mystery for more than two decades.

    The answer, according to astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA), may be that a small companion star has plunged into the heart of the red giant, ejecting most the matter of the larger star as an ultra-cold outflow of gas and dust.

    This outflow is expanding so rapidly — about 10 times faster than a single star could produce on its own — that its temperature has fallen to less than half a degree Kelvin (minus 458.5 degrees Fahrenheit). Zero degrees Kelvin is known as absolute zero, the point at which all thermodynamic motion stops.

    The ALMA observations enabled the researchers to unravel this mystery by providing the first precise calculations of the nebula’s extent, age, mass, and kinetic energy.

    “These new data show us that most of the stellar envelope from the massive red giant star has been blasted out into space at speeds far beyond the capabilities of a single, red giant star,” said Raghvendra Sahai, an astronomer at NASA’s Jet Propulsion Laboratory in Pasadena, California, and lead author on a paper appearing in the Astrophysical Journal. “The only way to eject so much mass and at such extreme speeds is from the gravitational energy of two interacting stars, which would explain the puzzling properties of the ultra-cold outflow.” Such close companions may be responsible for the early and violent demise of most stars in the Universe, Sahai noted.

    “The extreme properties of the Boomerang challenge the conventional ideas about such interactions and provide us with one of the best opportunities to test the physics of binary systems that contain a giant star,” adds Wouter Vlemmings, an astronomer at Chalmers University of Technology in Sweden and co-author on the study.

    The Boomerang Nebula is located about 5,000 light-years from Earth in the constellation Centaurus. The red giant star at its center is expected to shrink and get hotter, ultimately ionizing the gas around it to produce a planetary nebula. Planetary nebulae are dazzling objects created when stars like our sun (or a few times bigger) shed their outer layers as an expanding shell near the end of their nuclear-fusion-powered life. The Boomerang Nebula represents the very early stages of this process, a so-called pre-planetary nebula.

    When the Boomerang Nebula was first observed in 1995, astronomers noted that it was absorbing the light of the Cosmic Microwave Background, which is the leftover radiation from the Big Bang. This radiation provides the natural background temperature of space — only 2.725 degrees above absolute zero. For the Boomerang Nebula to absorb that radiation, it had to be even colder than this lingering, dim energy that has been continually cooling for more than 13 billion years.

    The new ALMA observations also produced an evocative image of this pre-planetary nebula, showing an hourglass-shaped outflow inside a roughly round ultra-cold outflow. The hourglass outflow stretches more than three trillion kilometers from end to end (about 21,000 times the distance from the Sun to the Earth), and is the result of a jet that is being fired by the central star, sweeping up the inner regions of the ultra-cold outflow like a snowplow.

    The ultra-cold outflow is more than 10 times bigger. Traveling at 164 kilometers per second, it took material at its outer edges approximately 3,500 years to reach these extreme distances after it was first ejected from the dying star.

    These conditions, however, will not last long. Even now, the Boomerang Nebula is slowly warming.

    “We see this remarkable object at a very special, very short-lived period of its life,” noted Lars-Åke Nyman, an astronomer at the Joint ALMA Observatory in Santiago, Chile, and co-author on the paper. “It’s possible these super cosmic freezers are quite common in the Universe, but they can only maintain such extreme temperatures for a relatively short time.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 4:27 pm on May 21, 2017 Permalink | Reply
    Tags: ALMA, , , , , , DeeDee,   

    From Astro Watch: “The Mysteries of DeeDee: One of the Solar System’s Most Distant Object Studied by Astronomers” 

    Astro Watch bloc

    Astro Watch

    May 21, 2017
    No writer credit found

    1
    Artist concept of the planetary body 2014 UZ224, more informally known as DeeDee. ALMA was able to observe the faint millimeter-wavelength “glow” emitted by the object, confirming it is roughly 635 kilometers across. At this size, DeeDee should have enough mass to be spherical, the criteria necessary for astronomers to consider it a dwarf planet, though it has yet to receive that official designation.
    Credit: Alexandra Angelich (NRAO/AUI/NSF)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Lurking somewhere beyond Neptune, the planetary body 2014 UZ224, nicknamed DeeDee, is one of the most distant objects in the solar system. Although DeeDee was lately studied by astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, this faraway dim object still holds many mysteries waiting to be uncovered.

    2014 UZ224 is a 635-kilometer-wide trans-Neptunian object (TNO), orbiting the sun every 1,136 years. The object was detected by a team of astronomers led by David Gerdes of the University of Michigan, using the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile as part of ongoing observations for the Dark Energy Survey.


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    They announced their discovery in October 2016 and informally dubbed the newly found TNO DeeDee, which is short for Distant Dwarf.

    Recent observations of DeeDee conducted with ALMA allowed Gerdes and his team to reveal the object’s fundamental orbital parameters as well as its size and albedo. Based on the new findings, the researchers assume that 2014 UZ224 is most likely a dwarf planet with a mixed ice-rock composition. However, more observations are needed in order to draw final conclusions about the real nature of this distant TNO.

    “We expect to make further optical observations of DeeDee with the Blanco 4-meter telescope during the Dark Energy Survey’s upcoming observing season, from August 2017 to February 2018. These observations will help refine DeeDee’s orbital parameters,” Gerdes told Astrowatch.net.

    DeeDee’s orbital and physical properties could reveal important insights about the formation of planets, including Earth. Such objects are leftovers from the formation of the solar system, thus could be real treasure troves of information regarding the history and evolution of celestial bodies.

    DeeDee is currently about 92 astronomical units (AU) away from the sun. This is roughly three times Pluto’s current distance. The object will reach it’s perihelion distance of about 38 AU in the year 2142, when due to its proximity it could be studied by a dedicated probe. Hence, the only opportunity now available to study this TNO is to employ ground-based telescopes or space observatories flying in Earth’s orbit.

    “A dedicated mission to study this object from close range is not feasible at this time. DeeDee will reach its perihelion distance of 38 AU in the year 2142. Perhaps at that point in the distant future a dedicated mission will be both practical and scientifically interesting,” Gerdes noted.

    TNOs are icy bodies in orbit beyond Neptune. Observations of these objects could provide better understanding of accretion and evolution processes that governed planetary formation in our solar system as well as in other dusty star discs. Currently, NASA’s New Horizons spacecraft, after completing its flyby of Pluto, is on its way to study such celestial body designated 2014 MU69.

    NASA/New Horizons spacecraft

    This object is about 44 AU away from the sun. New Horizons is expected to arrive there in January 2019.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:22 am on May 18, 2017 Permalink | Reply
    Tags: ALMA, , , , , Fomalhaut star system, ,   

    From ALMA: “ALMA Eyes Icy Ring Around Young Planetary System” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    18 May 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    Composite image of the Fomalhaut star system. The ALMA data, shown in orange, reveal the distant and eccentric debris disk in never-before-seen detail. The central dot is the unresolved emission from the star, which is about twice the mass of the Sun. Optical data from the Hubble Space Telescope is in blue; the dark region is a coronagraphic mask, which filtered out the otherwise overwhelming light of the central star. Credit: ALMA (ESO/NAOJ/NRAO), M. MacGregor; NASA/ESA Hubble, P. Kalas; B. Saxton (NRAO/AUI/NSF)

    NASA/ESA Hubble Telescope

    An international team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has made the first complete millimeter-wavelength image of the ring of dusty debris surrounding the young star Fomalhaut. This remarkably well-defined band of rubble and gas is likely the result of exocomets smashing together near the outer edges of a planetary system 25 light-years from Earth. Observations Suggest Chemical Kinship to Comets in Our Own Solar System.

    Earlier ALMA observations of Fomalhaut — taken in 2012 when the telescope was still under construction – revealed only about one half of the debris disk.

    2

    Though this first image was merely a test of ALMA’s initial capabilities, it nonetheless provided tantalizing hints about the nature and possible origin of the disk.

    The new ALMA observations offer a stunningly complete view of this glowing band of debris and suggest that there are chemical similarities between its icy contents and comets in our own solar system.

    “ALMA has given us this staggeringly clear image of a fully formed debris disk,” said Meredith MacGregor, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, USA, and lead author on one of two papers accepted for publication in the Astrophysical Journal describing these observations. “We can finally see the well-defined shape of the disk, which may tell us a great deal about the underlying planetary system responsible for its highly distinctive appearance.”

    Fomalhaut is a relatively nearby star system and one of only about 20 in which planets have been imaged directly. The entire system is approximately 440 million years old, or about one-tenth the age of our solar system.

    As revealed in the new ALMA image, a brilliant band of icy dust about 2 billion kilometers wide has formed approximately 20 billion kilometers from the star.

    Debris disks are common features around young stars and represent a very dynamic and chaotic period in the history of a solar system. Astronomers believe they are formed by the ongoing collisions of comets and other planetesimals in the outer reaches of a recently formed planetary system. The leftover debris from these collisions absorbs light from its central star and reradiates that energy as a faint millimeter-wavelength glow that can be studied with ALMA.

    Using the new ALMA data and detailed computer modeling, the researchers could calculate the precise location, width, and geometry of the disk. These parameters confirm that such a narrow ring is likely produced through the gravitational influence of planets in the system, noted MacGregor.

    The new ALMA observations are also the first to definitively show “apocenter glow,” a phenomenon predicted in a 2016 paper by lead author Margaret Pan, a scientist at the Massachusetts Institute of Technology in Cambridge and co-author on the new ALMA papers. Like all objects with elongated orbits, the dusty material in the Fomalhaut disk travels more slowly when it is farthest from the star. As the dust slows down, it piles up, forming denser concentrations in the more distant portions of the disk. These dense regions can be seen by ALMA as brighter millimeter-wavelength emission.

    3
    ALMA image of the debris disk in the Fomalhaut star system. The ring is approximately 20 billion kilometers from the central star and it is about 2 billion kilometers wide. The central dot is the unresolved emission from the star, which is about twice the mass of the Sun. Credit: ALMA (ESO/NAOJ/NRAO); M. MacGregor

    Using the same ALMA dataset, but focusing on distinct millimeter-wavelength signals naturally emitted by molecules in space, the researchers also detected vast stores of carbon monoxide gas in precisely the same location as the debris disk.

    “These data allowed us to determine that the relative abundance of carbon monoxide plus carbon dioxide around Fomalhaut is about the same as found in comets in our own solar system,” said Luca Matrà with the University of Cambridge, UK, and lead author on the team’s second paper. “This chemical kinship may indicate a similarity in comet formation conditions between the outer reaches of this planetary system and our own.” Matrà and his colleagues believe this gas is either released from continuous comet collisions or the result of a single, large impact between supercomets hundreds of times more massive than Hale-Bopp.

    The presence of this well-defined debris disk around Fomalhaut, along with its curiously familiar chemistry, may indicate that this system is undergoing its own version of the Late Heavy Bombardment, a period approximately 4 billion years ago when the Earth and other planets were routinely struck by swarms of asteroids and comets left over from the formation of the Solar System.

    “Twenty years ago, the best millimeter-wavelength telescopes gave the first fuzzy maps of sand grains orbiting Fomalhaut. Now with ALMA’s full capabilities the entire ring of material has been imaged,” concluded Paul Kalas, an astronomer at the University of California at Berkeley and principal investigator on these observations. “One day we hope to detect the planets that influence the orbits of these grains.”

    Additional information

    This research is presented in a paper titled A complete ALMA map of the Fomalhaut debris disk, M. MacGregor, et al., appearing in the Astrophysical Journal, and Detection of exocometary CO within the 440MYR-old Fomalhaut belt: A similar CO+CO2 ice abundance in exocomets and solar system comets, L. Matrà et al., appearing in the Astrophysical Journal.

    This work benefited from: NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate, NASA grants NNX15AC89G, NNX15AD95G, NSF grant AST-1518332, NSF Graduate Research Fellowship DGE1144152, and from NRAO Student Observing Support. This work has also been possible thanks to an STFC postgraduate studentship and the European Union through ERC grant number 279973.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 5:08 pm on May 16, 2017 Permalink | Reply
    Tags: ALMA, Astronomers Found Spirals Inside a Dust Gap of a Young Star Forming Disk, , , ,   

    From ALMA: “Astronomers Found Spirals Inside a Dust Gap of a Young Star Forming Disk” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    Undated
    Ya-Wen Tang
    Academia Sinica
    Institute of Astrophysics and Astronomy
    Tel: +886-2-2366-5430
    Email: ywtang@asiaa.sinica.edu.tw

    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    ALMA image of the dust ring (red) and gaseous spirals (blue) of the circumstellar disk AB Aurigae reveal gaseous spiral arms inside a wide dust gap, providing a hint of planet formation. Credit: ALMA (ESO/NAOJ/NRAO)/Tang et al.

    Planets form within disks composed of dust grains and gas. Planets can gather dust grains from their orbits, resulting in dust gaps or cavities, and can also cause spiral waves within the parental disks based on theoretical predictions. To understand where and when planets can form at early stages, ALMA’s capability of seeing disk material with high resolution can depict smoking-gun evidence of infant planets hidden in disks.

    Both dust gaps and spirals have been seen separately in a handful of disks. The new ALMA images of AB Aurigae clearly depict gas spirals inside a wide dust gap. These first reported gas spirals within a dust gap might indicate that there are at least 2 planets within this system. One planet at a distance of 80 astronomical units (au; the distance between the Sun and Earth) from the star is required to create the sharp dust ring. An additional planet at 30 au or closer from the star is required to produce such spirals.

    These gas spirals further provide an additional dimension to our understanding of planet- disk interaction. Spirals previously seen in the near infrared image appear at the inner edge of the newly detected gas spirals. This can happen when the gas spirals are puffed up and thus scatter more stellar light at locations closer to the star. The kinematics of gas within the spirals mostly follows the disk rotation. It is only at the putative planet location at 30 au from the star that gas has higher velocities, suggesting streaming motions near the planet.

    This research is presented in a paper titled Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity by Y.-W. Tang et al., published in the Astrophysical Journal

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 1:23 pm on May 13, 2017 Permalink | Reply
    Tags: ALMA, , , , , , ,   

    From Cambridge via phys.org: “Scientists investigate debris disk in a nearby planetary system” 

    U Cambridge bloc

    Cambridge University

    phys.org

    May 11, 2017
    Tomasz Nowakowski

    2
    ALMA band 7 (0.86 mm) continuum image of 61 Vir with natural weights and corrected by the primary beam response (FWHM∼ 1700). Credit: Marino et al., 2017.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Astronomers have recently presented new results of observations of a nearby planetary system known as 61 Virginis (or 61 Vir for short). The observations were focused on investigating the system’s debris disk, which could hold many clues to the nature of planetary formation beyond our solar system. The study is available in a paper published May 4, 2017.

    61 Vir is a G-type, 4.6-billion-year-old main-sequence star about the size of our sun, located approximately 28 light years away. The star is known to be orbited by at least three planets that are five, 18 and 23 times more massive than Earth. One of the most intriguing features of this system is a debris disk extending from 30 to at least 100 AU from the star.

    Debris disks are clouds of planetesimals and dust found in orbits around many stars. Studying such disks could improve our understanding about planet formation and the migration history of planets in planetary systems. With this aim in mind, a team of astronomers led by Sebastian Marino of the University of Cambridge in the U.K., has performed observations of 61 Vir’s debris disk using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. These observations were complemented by data from the Submillimetre Common-User Bolometer Array 2 (SCUBA2) installed in the James Clerk Maxwell Telescope (JCMT) at Mauna Kea Observatory in Hawaii.

    East Asia Observatory James Clerk Maxwell telescope, Mauna Kea, Hawaii, USA

    “In this paper, we present the first observations of 61 Vir with ALMA at 0.86 mm, obtained with the aim of studying its debris disc to reveal the location of the parent planetesimals, and place constraints on the presence of planets at large separations that can shape the mass distribution in the disc. (…) In order to obtain the best disc constraints, in our analysis we combine new ALMA band 7 observations and new data at 0.85 mm from SCUBA2 installed on JCMT, thus, incorporating information from small and large angular scale structure,” the researchers wrote in the paper.

    The new study reveals that the debris disk is larger than previously thought. Marino’s team found that it extends from 30 to at least 150 AU. Combined ALMA and SCUBA2/JMCT observations also show that at 0.86 mm the total disc emission is about 3.7 mJy and the disk has a surface density distribution of millimeter sized grains with a power law slope of approximately 0.1.

    Moreover, the researchers assume that a yet unseen fourth planet may lurk somewhere in the system between 61 Vir d at 0.5 AU and the inner edge of the disc. They argue that if the disc was stirred at 150 AU by an additional planet, that unseen alien world should have a mass of at least 10 Earth masses and should orbit its host at a distance between 10 and 20 AU.

    “We found that in order to have stirred the disc out to 150 AU, the planet must be more massive than 10 Earth masses and a semi-major axis between 10 and 20 AU if it has an eccentricity lower than 0.1. Otherwise, for higher eccentricities, it could have a lower mass and a semi-major axis between 4 and 20 AU,” the team concluded.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: