Tagged: Agriculture Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:36 pm on August 11, 2022 Permalink | Reply
    Tags: "The Cost of Climate Change", Agriculture, Climate change impacts economic growth in about 22% percent of the countries analyzed., , From crop damage to cooling failures at cloud-based data centers climate change affects a wide variety of economic sectors., The research uses an empirical approach to revisit the effect of rising global temperatures and climate change on gross domestic product., The study found that economies are sensitive to persistent temperature shocks over at least a 10-year time frame.,   

    From The University of California-Davis: “The Cost of Climate Change” 

    UC Davis bloc

    From The University of California-Davis

    8.10.22
    Media Contacts:

    Bernardo Bastien-Olvera
    UC Davis Geography
    bastien@ucdavis.edu.
    (Bastien-Olvera is based in Mexico City, Mexico. Available for interviews in English and Spanish.)

    Andy Fell
    UC Davis News and Media Relations
    530-752-4533
    ahfell@ucdavis.edu

    Kat Kerlin
    UC Davis News and Media Relations
    530-750-9195
    kekerlin@ucdavis.edu

    1
    UC Davis Ph.D. candidate Bernardo Bastien-Olvera, sitting in the UC Davis Arboretum, looks at climate change’s impacts to the global economy in his study in the journal Environmental Research Letters. (Brian GG)

    From crop damage to cooling failures at cloud-based data centers climate change affects a wide variety of economic sectors. It’s unclear whether a country’s economy can bounce back each year from these impacts or if global temperature increases cause permanent and cumulative impacts on the market economy.

    A study from the University of California, Davis, published today by IOP Publishing in the journal Environmental Research Letters [below], addresses this fundamental question, which underlies the costs and benefits of climate change policy. The research uses an empirical approach to revisit the effect of rising global temperatures and climate change on gross domestic product, or GDP.

    The study found that economies are sensitive to persistent temperature shocks over at least a 10-year time frame. It also found that climate change impacts economic growth in about 22% percent of the countries analyzed.

    “Our results suggest that many countries are likely experiencing persistent temperature effects,” said lead author Bernardo Bastien-Olvera, a Ph.D. candidate at UC Davis. “This contradicts models that calculate metrics like the social cost of carbon, which mostly assume temporary temperature impacts on GDP. Our research adds to the evidence suggesting that impacts are far more uncertain and potentially larger than previously thought.”

    2
    A dry creek bed in California’s Central Valley during the 2014 drought. The region is again experiencing intense drought. A UC Davis study shows that economic impacts of global temperature shocks can have lasting impacts on the market. (Gregory Urquiaga/UC Davis)

    Persistent and cumulative

    Previous research examined the question by estimating the delayed effect of temperature on GDP in subsequent years, but the results were inconclusive. With this study, UC Davis scientists and co-authors from the European Institute on Economics and the Environment in Italy used a novel method to isolate the persistent temperature effects on the economy by analyzing lower modes of oscillation of the climate system.

    For example, El Niño Southern Oscillation, is a three to seven-year temperature fluctuation in the Pacific Ocean that affects temperature and rainfall in many parts of the world.

    “By looking at the GDP effects of these types of lower-frequency oscillations, we’re able to distinguish whether countries are experiencing temporary or persistent and cumulative effects,” Bastien-Olvera said.

    The team used a mathematical procedure called filtering to remove higher frequency yearly changes in temperature.

    Enormous task

    The researchers note that characterizing temperature impacts on the economy is an enormous task not likely to be answered by a single research group.

    “Data availability and the current magnitude of climate impacts limit what can be done globally at the country level,” said co-author Frances Moore, an assistant professor of environmental science and policy at UC Davis and the study’s principal investigator, “However, our research constitutes a new piece of evidence in this puzzle and provides a novel tool to answer this still unresolved question.”

    Additional co-authors include Francesco Granella of the European Institute on Economics and the Environment.

    The study was funded by the National Science Foundation and the European Union’s Marie Skłodowska-Curie Actions program.

    Science paper:
    Environmental Research Letters

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California-Davis is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of The University of California system. The institution was first founded as an agricultural branch of the system in 1905 and became the seventh campus of the University of California in 1959.

    The university is classified among “R1: Doctoral Universities – Very high research activity”. The University of California-Davis faculty includes 23 members of The National Academy of Sciences, 30 members of The American Academy of Arts and Sciences, 17 members of the American Law Institute, 14 members of the Institute of Medicine, and 14 members of the National Academy of Engineering. Among other honours that university faculty, alumni, and researchers have won are two Nobel Prizes, a Presidential Medal of Freedom, three Pulitzer Prizes, three MacArthur Fellowships, and a National Medal of Science.
    Founded as a primarily agricultural campus, the university has expanded over the past century to include graduate and professional programs in medicine (which includes the University of California-Davis Medical Centre), law, veterinary medicine, education, nursing, and business management, in addition to 90 research programs offered by University of California-Davis Graduate Studies. The University of California-Davis School of Veterinary Medicine is the largest veterinary school in the United States and has been ranked first in the world for five consecutive years (2015–19). The University of California-Davis also offers certificates and courses, including online classes, for adults and non-traditional learners through its Division of Continuing and Professional Education.

    The University of California-Davis Aggies athletic teams compete in NCAA Division I, primarily as members of the Big West Conference with additional sports in the Big Sky Conference (football only) and the Mountain Pacific Sports Federation.

    Seventh UC campus

    In 1959, the campus was designated by the Regents of The University of California as the seventh general campus in the University of California system.

    University of California-Davis’s Graduate Division was established in 1961, followed by the creation of the College of Engineering in 1962. The law school opened for classes in fall 1966, and the School of Medicine began instruction in fall 1968. In a period of increasing activism, a Native American studies program was started in 1969, one of the first at a major university; it was later developed into a full department within the university.

    Graduate Studies

    The University of California-Davis Graduate Programs of Study consist of over 90 post-graduate programs, offering masters and doctoral degrees and post-doctoral courses. The programs educate over 4,000 students from around the world.

    UC Davis has the following graduate and professional schools, the most in the entire University of California system:

    UC Davis Graduate Studies
    Graduate School of Management
    School of Education
    School of Law
    School of Medicine
    School of Veterinary Medicine
    Betty Irene Moore School of Nursing

    Research

    University of California-Davis is one of 62 members in The Association of American Universities, an organization of leading research universities devoted to maintaining a strong system of academic research and education.

    Research centers and laboratories

    The campus supports a number of research centers and laboratories including:

    Advanced Highway Maintenance Construction Technology Research Laboratory
    BGI at UC Davis Joint Genome Center (in planning process)
    Bodega Marine Reserve
    C-STEM Center
    CalEPR Center
    California Animal Health and Food Safety Laboratory System
    California International Law Center
    California National Primate Research Center
    California Raptor Center
    Center for Health and the Environment
    Center for Mind and Brain
    Center for Poverty Research
    Center for Regional Change
    Center for the Study of Human Rights in the Americas
    Center for Visual Sciences
    Contained Research Facility
    Crocker Nuclear Laboratory
    Davis Millimeter Wave Research Center (A joint effort of Agilent Technologies Inc. and UC Davis) (in planning process)
    Information Center for the Environment
    John Muir Institute of the Environment (the largest research unit at UC Davis, spanning all Colleges and Professional Schools)
    McLaughlin Natural Reserve
    MIND Institute
    Plug-in Hybrid Electric Vehicle Research Center
    Quail Ridge Reserve
    Stebbins Cold Canyon Reserve
    Tahoe Environmental Research Center (TERC) (a collaborative effort with Sierra Nevada University)
    UC Center Sacramento
    UC Davis Nuclear Magnetic Resonance Facility
    University of California Pavement Research Center
    University of California Solar Energy Center (UC Solar)
    Energy Efficiency Center (the very first university run energy efficiency center in the Nation).
    Western Institute for Food Safety and Security

    The Crocker Nuclear Laboratory on campus has had a nuclear accelerator since 1966. The laboratory is used by scientists and engineers from private industry, universities and government to research topics including nuclear physics, applied solid state physics, radiation effects, air quality, planetary geology and cosmogenics. University of California-Davis is the only University of California campus, besides The University of California-Berkeley, that has a nuclear laboratory.

    Agilent Technologies will also work with the university in establishing a Davis Millimeter Wave Research Center to conduct research into millimeter wave and THz systems.

     
  • richardmitnick 9:05 am on August 4, 2022 Permalink | Reply
    Tags: "Discovering plant science", Agriculture, , , Millsboro’s Aaron Doll discovers the science of agriculture and interns with researchers at UD’s Carvel Center in Georgetown.,   

    From The University of Delaware : “Discovering plant science” 

    U Delaware bloc

    From The University of Delaware

    8.3.22
    Michele Walfred

    Millsboro’s Aaron Doll discovers the science of agriculture and interns with researchers at UD’s Carvel Center in Georgetown.


    SEEDING A PLANT SCIENCE DEGREE

    After starting his first year at the University of Delaware online in the fall of 2020 amid the COVID-19 pandemic, Aaron Doll was thrilled to start in-person classes for his sophomore year as a student in UD’s Associate in Arts Program (AAP) in Georgetown, Delaware.

    With the return of in-person classes in the fall of 2021, Doll joined fellow UD AAP students taking core courses and electives with the goal of completing an associate’s degree and then transitioning to main campus to complete a bachelor’s degree.

    A resident of Millsboro in Sussex County and a graduate of Indian River High School, Doll had opted to start his UD experience in the AAP instead because it meant free tuition for at least two years of his UD education. SEED (Student Excellence Equals Degree) scholarships are funded by the State of Delaware and cover tuition for eligible students enrolled in the AAP at UD’s Wilmington, Dover, and Georgetown locations.

    1
    UD student Aaron Doll examines a stand of corn growing at the UD Warrington Farm after learning about pest and disease research.

    Doll was excited to attend all of his courses, but one elective course proved to be more than he expected.

    He signed up for Understanding Today’s Agriculture (AGRI 130) taught at UD’s Carvel Research and Education Center in Georgetown, a 347-acre research farm and the southern campus for the College of Agriculture and Natural Resources. Taught by Mark Isaacs, associate professor in the Department of Plant and Soil Sciences and director of Carvel, the course showcases the diversity of disciplines and careers in agriculture.

    After a lecture in precision agriculture, Doll was hooked.

    “It was so interesting to learn about the different career pathways in agriculture,” Doll said. “Sparks flew!”

    He approached Isaacs after class, interested in learning how he could steer his course of study toward one of UD’s agriculture majors. He also inquired about summer internship opportunities, a practice Isaacs champions for his students.

    “Aaron approached me after learning about the level of technology and engineering involved in the field of agriculture,” Isaacs said. “It motivated him to adjust his academic interests into plant and soil sciences.”

    2
    Aaron Doll at a recent tour of UD Warrington Farm in Harbeson, Delaware, where doctoral student Maddle Henrickson gave Doll a lesson in leaf damage. Which is from a Japanese beetle? (Answer: the leaf on the left).

    At Carvel, which boasts a research farm, laboratories and plots for fruits, vegetables and agronomic crops, curious minds and able hands are always welcome to assist Cooperative Extension agents and researchers. During the growing season, Isaacs arranged a paid internship for Doll, made possible by a grant from the Sussex County Council, whose only stipulation was that the opportunity goes to a Sussex resident.

    “Our Sussex County grant funds are used to support work-based learning opportunities for students from the county interested in agriculture,” Isaacs said. “The grant is pivotal to broadening students’ exposure to the unique challenges and opportunities involved in our state’s number one industry — agriculture.”

    Learning about lima beans

    Emmalea Ernest, scientist in the Extension vegetable and fruit program, served as Doll’s lead mentor. He quickly learned of Ernest’s reputation, particularly in the lima bean breeding program and her research on heat stress in fruits and vegetables. He soon found out he was working alongside “the lima bean lady.”

    The manual labor and working outside in the summer heat took some time to get used to.

    “But I quickly adapted,” Doll said. “And we have a good team so it goes by fast and we have fun. I am so lucky to be working with Dr. Ernest. I am building a valuable contact for my career.”

    Doll admires Ernest’s work ethic. “She is a very, very hard worker,” Doll said. “Working beside Dr. Ernest, who is an expert in her field, and with something I want to do in the future — having that in my pocket, being able to text her if I ever need help in the future, it’s a great experience to know and have.”

    Ernest has spent many years putting together effective teams.

    “I’ve had a few other students in UD’s Associate in Arts Program in Georgetown work for me in the past,” Ernest said. “I am happy to provide job and internship opportunities to AAP students who are interested in science or agriculture.”

    Doll is receiving a diverse experience working with the rest of Carvel’s summer crew — planting, weeding, collecting data and harvesting research plots for peas, peppers, cauliflower, lima beans and small fruit. Most field research projects take several months, but Ernest gave Doll the opportunity to see a plant genetics experiment from planning through data analysis.

    4
    UD doctoral student Maddle Henrickson (right) shows soybean leaf damage to undergraduate student Aaron Doll.

    “This is a trait that is important for the culinary quality of lima beans grown in Delaware,” Ernest said. “We screened a panel of 250 diverse lima bean lines, which gave Aaron a chance to work with very unique lima bean types from around the world, including wild germplasm. We have done some preliminary data analysis and are continuing to work to develop a protocol for using image processing to measure differences between lima bean lines.”

    Doll proudly calls the three plots of carefully labeled lima beans, two of which he hand planted, his home away from home.

    Scoping out UD in Sussex County

    Occasionally, Doll gets a change of scenery. He traveled to UD’s Warrington Irrigation Research Farm in Harbeson for an overview of applied precision agricultural technology. James Adkins, associate scientist and irrigation engineer, provided a close up look at the irrigation technology in use at the farm with Delaware’s two largest crops, soybeans and corn. There, Doll also met UD plant pathologist Alyssa Koehler and doctoral student Maddle Henrickson to get a glimpse of the integration of data exchanged between experts and disciplines, and the value of technology as applied in efficacy trials for pests and diseases.

    5
    The lawn at Doll’s “home away from home,” at the UD’s Carvel Research and Education Center in Georgetown are actually fields of newly hand-planted lima bean varieties.

    Doll was intrigued by what he saw at Warrington.

    “I personally love robotics, technology and thinking about the future. I also love helping people,” Doll said. “For the past six years I worked as a lifeguard, so switching to this field to help others, it’s a big change, but it is the same concept. It’s not just technology, it encompasses climate change, plant breeding, insects — making sure everything is growing as it should be.”

    Doll’s summer experiences are exactly the real-world ones that Isaacs hopes all students will absorb.

    “Working with Carvel’s experts and researchers can play a large part in shaping their future careers paths as they move through college,” Isaacs said. “This internship program allows motivated students in both the Associate in Arts program here in Georgetown as well as Sussex County students at UD to gain valuable knowledge and skill sets within the many fields of agriculture.”

    Transitioning to Newark

    In the 2022 fall semester, Doll will transition to UD’s main campus in Newark and begin his junior year as a plant science major in the College of Agriculture and Natural Resources. He will do so with some clear advantages and feelings of purpose. Doll won’t have to worry about the cost of tuition for his junior year; through the expanded SEED Scholarship program tuition will be free for this year also. Equipped with key experiences and professional contacts, Doll joins his fellow plant science majors as they earn their bachelor’s degrees, so they can feed the world and protect the planet.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 8:28 pm on August 3, 2022 Permalink | Reply
    Tags: "How a little prairie can help farms and nature", Agriculture, An MSU study 30-plus years in the making shows that converting strips of farmland to prairie brings environmental benefits without sacrificing crop yields., , , The W.K. Kellogg Biological Station - or KBS   

    From The Michigan State University College of Natural Science : “How a little prairie can help farms and nature” 

    From The Michigan State University College of Natural Science

    At

    Michigan State Bloc

    Michigan State University

    July 28, 2022
    Matt Davenport

    An MSU study 30-plus years in the making shows that converting strips of farmland to prairie brings environmental benefits without sacrificing crop yields.

    1
    Prairie strips, like the one shown here, can be integrated into farmland to promote soil health, increase biodiversity and diminish carbon footprints without sacrificing crop yields. Credit: Kurt Stepnitz Photography

    The world is facing two huge, interconnected challenges. We need to feed the planet’s population, and at the same time, the way we grow our food is helping fuel the loss of the planet’s natural biodiversity.

    But addressing one challenge need not come at the expense of the other. In fact, new research from Michigan State University is showing that bringing a little prairie back to farms in Michigan and other parts of the Midwest could help preserve both biodiversity and crop yields.

    “The goal is to do both simultaneously in the vast area planted in row crops,” said Lindsey Kemmerling, the first author of the MSU-led study published May 10 in the journal Frontiers in Ecology and Evolution [below]. “We need to make this land habitable for species and for the ecosystem services the increased biodiversity can provide to the farms.”

    Kemmerling earned her doctorate while working on the project in the lab of Nick Haddad, a professor at MSU’s W.K. Kellogg Biological Station in the College of Natural Science’s Department of Integrative Biology and in the Ecology, Evolution and Behavior program.

    Haddad, Kemmerling and their colleagues studied a variety of current farmland management practices with a twist. Working at the W.K. Kellogg Biological Station, or KBS, they selected narrow regions in research fields where, instead of crops, they planted prairie vegetation native to southwest Michigan. These regions grew into what are known as prairie strips, slivers of land that increase biodiversity by attracting native pollinators and other organisms that are less prevalent on developed land.

    The team showed that a prairie strip’s flora and fauna brought an array of beneficial “ecosystem services” to the strips and the surrounding farmland. For example, the prairie strips attracted more pollinators and increased pollinator activity near the strips.

    “Prairie strips have broad-ranging effects — including improved soil health and increased biodiversity,” said Haddad, who is also the director of the Long-Term Ecological Research, or LTER, site at KBS. “We were excited to see that the benefits of prairie strips for biodiversity and ecosystems in the strips spilled over into cropland.”

    “The most surprising thing to me was how quickly we saw the changes,” said Kemmerling, who is now a postdoctoral research associate at the University of Minnesota. The team measured positive changes within the first year of establishing the prairie strips, and some of those advantages became more pronounced in the experiment’s second year.

    “It’s promising to see these changes develop as the prairie strips are maturing,” Kemmerling said. “It’s exciting to think about a few years ahead and how they’ll be performing, I think particularly for biodiversity and for carbon accumulation in the soil.”

    Although Kemmerling may no longer be at KBS to watch those changes unfold, rest assured that the plots will have their stewards, continuing a tradition that dates back more than three decades.

    When combined with the right field management practices, the array of benefits gained by adding a prairie strip essentially offset the loss of cropland. That is, prairie strips could be implemented without compromising crop yield.

    3
    Michaela Rose (left), a laboratory technician, and Oren Lerner (right), an undergraduate research apprentice, collect insect samples from a prairie strip at the Long-Term Ecological Research site at the W.K. Kellogg Biological Station. Credit: Kurt Stepnitz Photography.

    The long-term advantage

    Working with collaborators from Hawai’i Pacific University, the University of Puerto Rico and the U.S. Department of Agriculture, the MSU researchers measured a range of dynamic ecosystem attributes in and around prairie strips. One of the reasons they could do that is tied to the LTER site itself, which has been running since 1987.

    “We’ve been working in these plots for over 30 years. We have a deep understanding of how the ecosystems here work and how farming practices affect those,” Haddad said. “We can do things here that can’t be done anywhere else.”

    The National Science Foundation supports a network of 28 LTER sites located across the U.S., French Polynesia and Antarctica that enable ecological studies that would otherwise be impossible. The KBS LTER site is one of those, providing invaluable insights for the Midwest, America’s breadbasket.

    “KBS LTER is unique among the LTER sites because it is agricultural,” said Sarah Evans, a coinvestigator on the new study. Evans is an associate professor with KBS, the College of Natural Science and the Ecology, Evolution and Behavior program at MSU.

    Most other LTER sites are on unmanaged lands, providing critical information about how native ecosystems are responding to large-scale, long-term influences such as climate change. But humans and agriculture are subject to those same forces while facing a host of unique challenges and considerations. The KBS LTER site lets scientists work to understand all of those.

    “I feel proud that KBS research is relevant and important given that half of global land area is managed or human dominated,” Evans said. “We get to study how humans interact with nature and still identify ecological principles in these managed systems.”

    The idea of integrating prairie strips in the middle of managed farmland was on Haddad’s mind when he joined MSU about five years ago and became the lead principal investigator of the LTER site. At the time, people were becoming more aware of the potential of prairie strips, thanks in large part to studies from Iowa State University. Researchers there were showing that prairie strips could slow erosion and prevent agricultural runoff water from reaching natural water systems.

    4
    An aerial view shows prairie strips growing among row crops. Credit: Kevin Kehmark.

    Haddad and his colleagues wondered what other benefits the prairie strips could bring to farms in Michigan and throughout the Midwest, where roughly a quarter of agricultural land was once prairie. As scientists, they knew the prairie strips would offer ecological advantages, but they also believed the strips would make economic sense for farmers.

    Prairie strips are straightforward to cultivate and, thanks again to Iowa State research, they have recently become eligible for subsidies from the USDA. Plus, when grown parallel to crop rows, the strips don’t interfere with conventional farm equipment.

    The researchers also approached the study with a range of interests and expertise to probe multiple aspects of prairie strips and their implications for nature and for farmers in places like Michigan.

    5
    Annabelle McCarthy, research technician in the Haddad Lab, surveying for butterflies in a plot alongside a prairie strip. Credit: Jamie Smith.

    Prairie strip companions

    7
    MSU doctoral student Corinn Rutkoski.

    “Going into this project, one of the major unknowns was how the benefits of prairie strips translate to Michigan, a region with different ecology and agriculture than what was studied in Iowa,” said Corinn Rutkoski, a doctoral student in the Evans lab. “We found there’s immense potential for prairie strips to benefit Michigan farmers and ecosystems.”

    The research team, which also included MSU research assistant Jamie Smith and professional aide Esbeiry Cordova-Ortiz, revealed the most comprehensive picture to date of prairie strips’ benefits in the northern part of the Midwest.

    In addition to increasing pollinator abundance and activity, prairie strips also bolstered a plot’s natural pest defenses with a larger abundance of spiders, and they attracted more dung beetles, which can break apart manure and liberate nutrients for plants and soil.

    The researchers also saw an uptick in soil carbon that was readily available to microbes, which is good for soil health and an indicator that, over time, the plots could start sequestering more carbon from the atmosphere, Rutkoski said. The prairie vegetation also grew larger and deeper root systems than annual crops, further enhancing a plot’s carbon-storing capacity.

    Finally, the researchers also quantified the ants in and around the strips, which can help keep pests down and disperse plant seeds. However, the team did not link any significant benefit to these insects from the prairie strips — yet.

    All told, there were many reasons to help farmers bring prairie strips to their land, which the researchers are working to do now through what’s called the MiSTRIPS program. But the researchers also stressed that prairie strips aren’t a one-size-fits-all solution. They’re designed for farms that were once home to native prairies.

    “Prairie strips won’t be appropriate for every region,” Rutkoski said. “But there are opportunities to introduce other native plant communities — savanna and woodland, for example — that increase habitat, biodiversity and ecosystem services in ways that benefit nature and people. We hope this work will help springboard future farm diversification.”

    “Prairie strips are one method for changing how we do agriculture,” Kemmerling said. “They’re a piece of the puzzle.”

    Science paper:
    Frontiers in Ecology and Evolution

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    About The College of Natural Science

    The College of Natural Science at Michigan State University is home to 27 departments and programs in the biological, physical and mathematical sciences.

    The college averages $57M in research expenditures annually while providing world-class educational opportunities to more than 5,500 undergraduate majors and 1,200 graduate and postdoc students. There are 800+ faculty and academic staff associated with NatSci and more than 63,000 living alumni worldwide.

    College of Natural Science Vision, Mission, Values

    The Michigan State University College of Natural Science is committed to creating a safe, collaborative and supportive environment in which differences are valued and all members of the NatSci community are empowered to grow and succeed.

    The following is the college’s vision, mission and values, as co-created and affirmed by the College of Natural Science community:

    Vision:

    A thriving planet and healthy communities through scientific discovery.

    Mission:

    To use discovery, innovation and our collective ingenuity to advance knowledge across the natural sciences. Through equitable, inclusive practices in research, education and service, we empower our students, staff and faculty to solve challenges in a complex and rapidly changing world.

    Core Values:

    Inclusiveness-

    Foster a safe, supportive, welcoming community that values diversity, respects difference and promotes belonging. We commit to providing equitable opportunity for all.

    Innovation-

    Cultivate creativity and imagination in the quest for new knowledge and insights. Through individual and collaborative endeavors, we seek novel solutions to current and emergent challenges in the natural sciences.

    Openness-

    Commit to honesty and transparency. By listening and being open to other perspectives, we create an environment of trust where ideas are freely shared and discussed.

    Professionalism-

    Strive for excellence, integrity and high ethical standards. We hold ourselves and each other accountable to these expectations in a respectful and constructive manner.

    Michigan State Campus

    Michigan State University is a public research university located in East Lansing, Michigan, United States. Michigan State University was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at Michigan State University, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University continues its research with facilities such as the Department of Energy -sponsored Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory [below]. The Department of Energy Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    Michigan State University FRIB [Facility for Rare Isotope Beams] .

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University, in consortium with the University of North Carolina at Chapel Hill and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.

    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019. In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
  • richardmitnick 9:35 pm on July 27, 2022 Permalink | Reply
    Tags: "Salty farms", Agriculture, , , , Spots of salty barren soil occur over usually healthy farmland and with these spots comes a decrease in crop yield., , The University of Delaware study uses satellite and drone imagery to spot barren salt patches on Delmarva farms.   

    From The University of Delaware : “Salty farms” 

    U Delaware bloc

    From The University of Delaware

    July 25, 2022
    Adam Thomas
    Photos by Manan Sarupria, Matthew Walter and Jarrod Miller

    The University of Delaware study uses satellite and drone imagery to spot barren salt patches on Delmarva farms.

    1
    This drone image by Jarrod Miller, assistant professor in the Department of Plant and Soil Sciences, shows how farms close to estuaries and tidal streams connected to the Chesapeake Bay can be impacted by saltwater encroachment.

    On farms in coastal areas around the Chesapeake Bay, and increasingly on farms located further inland, lush cropland will occasionally be plagued with spots of salty barren soil. These spots occur over usually healthy farmland and with these spots comes a decrease in crop yield.

    The University of Delaware is part of a multi-institutional team, which includes researchers from the University of Maryland and George Washington University, researching this problem and trying to develop a tool to help farmers better prepare themselves against these damaging salt patches.

    Manan Sarupria and Matthew Walter, both doctoral students in the Department of Geography and Spatial Sciences, are conducting research on the issue with Pinki Mondal, assistant professor in the Department of Geography and Spatial Sciences and the Department of Plant and Soil Sciences and a resident faculty member of The University of Delaware’s Data Science Institute. They recently spent two days in Somerset County, and one day in Dorchester County, both in Maryland, looking at these salt patches on farms and collecting data points to help train a machine learning algorithm that will use current and historical satellite data to paint a better picture of the history and extent of these patches throughout the region.

    2
    Manan Sarupria (right) and Matthew Walter, both doctoral students in The University of Delaware’s Department of Geography and Spatial Sciences, traveled to farms in Maryland recently to study how cropland in coastal areas around the Chesapeake Bay are being impacted by spots of salty, barren soil.

    The work builds off research Walter conducted in 2019 with Mondal that mapped salt deposits on cropland across the Delmarva region using the United States Geological Survey’s National Agriculture Imagery Program (NAIP), which provided high-resolution aerial images of farmland, and Landsat satellite images.

    Building off those projects, Sarupria is using Sentinel satellite images — which will provide a larger dataset but images with a coarser resolution than the NAIP images — to get a more frequent estimation of salt deposits as well as a better understanding of the mechanism behind those salt deposits.

    3
    Usually estuaries drain the water from the farms to the ocean, but when a high tide occurs or when the sea level is rising, instead of draining toward the ocean, saltwater is now moving the other direction, into the farms.

    To begin this work, Sarupria and Walter went to farms after virtually identifying salt or bare patches on pieces of cropland. Once there, they were able to map the salt patches.

    “We saved the geolocation, the latitude and longitude of a particular point, where we saw salt patches, unhealthy crops or bare patches in the field,” said Sarupria. “We did this for all the fields from where we had the permission of the farmers and the reports that these problems have been seen.”

    Over the course of two days, they collected 200 data points in 20 fields. With that data in hand, they will now examine the satellite imagery precisely at these 200 points and try to see how these salt patches, unhealthy vegetation or bare patches look from space — using images from Sentinel satellites.

    4
    Manan Sarupria’s research will use Sentinel satellite images to get a more frequent estimation of salt deposits as well as a better understanding of the mechanism behind those salt deposits.

    “The satellite data allows us to see beyond what we can see with the naked eye and gives us more insight into what is happening in that particular point or that particular pixel,” said Sarupria. “The great thing about the satellite product is that it gives us a chance to look in the past — we will have the same visualization of the same part of the world every five days — and it will help us see the changes that have been occurring on that particular point.”

    For example, if a hurricane happened and there was a lot of salty water pushed inland from the coast, they could see how the farms looked before and after the hurricane.

    In addition to collecting data points, seeing the fields in person allowed Sarupria and Walter to train their eyes to see what these spots look like in the real world. This will help them identify the patches on satellite images and allow them to train the machine learning algorithm to identify the patches on a larger scale.

    5
    Salt patches can be seen encroaching on farmland.

    It also allowed them to see how this problem was physically affecting the farms and personally affecting the farmers.

    The first field they visited had a big, white and crusty salt patch at the entrance, and they could tell the difference from the healthy soil the moment they stepped on it.

    “Our shoes were crushing those salt and soil mixtures, and it did not feel normal,” said Sarupria. “It was interesting to walk through healthy crops, and then all of a sudden, in the center of the farm, you have a big bare patch or some crops shorter than the other crops, which you don’t notice when you’re at the edge of the field.”

    6
    The researchers saved the geolocation, the latitude and longitude of a particular point, where they saw salt patches, unhealthy crops or bare patches in the field.

    Walter said it was interesting to see how farmers have been adjusting to these increases in salt on their respective farms and how some areas were no longer farmable.

    “We saw some farms where the farmers basically abandoned land for farming so there were huge fields that were no longer being farmed at all,” said Walter. “Instead, there are wetlands or meadow plants that are starting to grow because those plants are better adapted to grow in the salty areas. Seeing that impact and the amount of loss of cropland was pretty interesting. It’s something you can’t easily notice on the satellites.”

    The farms were all close to estuaries and tidal streams, which connect to the bay and make channels for salt to encroach onto the farmlands. Usually estuaries drain the water from the farms to the ocean, but when a high tide occurs or when the sea level is rising, instead of draining towards the ocean, saltwater is now moving the other direction, into the farms.

    7
    This photo shows how on some farms, the farmers basically abandoned land for farming and instead, wetland or meadow plants are starting to grow in those areas because those plants are better adapted to grow in the salty areas.

    Now that the initial data is gathered, Sarupria is going to train a machine learning algorithm to spot the various types of salty points across the Delmarva region. Because what the salt patches look like can vary greatly — one point might have a lot of salt and less soil while another point might have less salt but a lot of soil — those differences and combinations need to be registered so the model can capture as many points as possible.

    Both Sarupria and Walter said that it was helpful to visit the fields and speak with those impacted by the salt intrusion.

    “We saw firsthand the effects of climate change, salt water intrusion, and unsustainable farming practices, and I think it’s something we’re going to see more of,” said Walter. “When you’re sitting behind a computer for so long, you can lose that human component so I think that’s why the fieldwork was so important for us, to get that connection between the land, the farmers and those affected. One of the farmers said to us, ‘As soon as you finish this work or publish this work, please send it my way and let me know.’ So it was great to see that the farmers are also interested in this, and they also want to know what’s happening.”

    8
    Seeing how the salt patches impacted farmland in person will help the researchers train a machine learning algorithm that will use current and historical satellite data to paint a better picture of the history and extent of these patches throughout the region.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 9:37 am on July 12, 2022 Permalink | Reply
    Tags: "Wonderful World of Wheat", Agriculture, , Common wheat-domesticated over thousands of years-is a good example of the complexity of food plants., , Emmer and wild goatgrass native to western Asia gave rise to what is now the most important food crop., It is becoming increasingly clear just how complex and interlinked the genetically regulated metabolism of plants really is., ,   

    From The University of Zürich (Universität Zürich) (CH): “Wonderful World of Wheat” 

    From The University of Zürich (Universität Zürich) (CH)

    12 July 2022
    Stefan Stöcklin

    1
    Bread wheat has a thousand-year history and is extraordinarily adaptable. Its potential is far from exhausted. (Image: Rebecca Leber)

    Beat Keller has been researching wheat for decades and has lost none of his fascination with the plant. Each year, the high-yielding crop produces around 100 kilograms of grain – per person on the planet, mind you. “Without wheat, there would be widespread hunger, not only in poorer countries, but also in Switzerland,” says the molecular biologist and plant researcher.

    Thanks to this strategic importance, as well as the fact that its long agricultural history makes it one of the most thoroughly researched plants, wheat is a rich object of study for molecular biologists. As a result, Beat Keller and his fellow researchers have spent the past few decades working on genetically engineering wheat to make it more resistant to powdery mildew, a widespread fungal disease

    And it has become clear that this method works and the plant’s resistance can, in the researcher’s words, be “massively improved”. To achieve this effect, Keller and his team set about identifying and isolating natural resistance genes in wheat varieties from around the world. These powdery mildew resistance genes, or Pm genes, produce immune receptors that trigger the plant’s natural cellular defenses upon exposure to the fungus.

    The scientists’ intricate genetic and molecular work involved introducing different Pm gene combinations in wheat lines and, in a first for Switzerland, carrying out field trials with Agroscope, the Swiss center of excellence for agricultural research. The first of these tests took place in 2008, with the final series of tests set to conclude at Agroscope’s research center in Reckenholz in Zürich this year and the next.

    For years, Beat Keller has been the only researcher in Switzerland to take on the challenge of putting transgenic plants out in the field despite the moratorium on GMOs in agriculture. His research has only been possible thanks to an exemption for basic research. But Keller doesn’t see himself a martyr for the cause of green genetic engineering, but more as blazing a trail for a technology that he thinks will “be indispensable for securing the future food supply.” After all, says Keller, breeding plants without using these tools makes very little sense considering the growing demand for food crops.

    Following through with this thought, experiments in the field will inevitably be a part of future research. “We all know that results achieved in a controlled lab environment aren’t always confirmed in the field,” says the plant researcher. He thus believes that scientists carrying out basic research will practically be forced to verify their findings in a real-world setting. If they don’t, their findings will remain largely academic.

    Complex food crops

    And yet, Keller’s stance is refreshingly different to that of other GMO proponents who have been extolling the virtues of green genetic engineering. Many have been quick to predict genetically engineered wonder plants capable of binding nitrogen from the air and delivering top crop yields on the back of optimized photosynthesis, all while being completely resistant to heat and pests.

    “We’ve learned a great deal over the past few years and expectations are more humble now,” says the plant scientist. “The notion that we can make a profound impact with just a few genetic tweaks is often incorrect.”

    Instead, it is becoming increasingly clear just how complex and interlinked the genetically regulated metabolism of plants really is. Turn a screw here, and a cog moves over there. Common wheat-domesticated over thousands of years-is a good example of the complexity of food plants.

    Our ancestors bred this wheat species from wild varieties of ancient grains some 8,000 years ago. Emmer and wild goatgrass native to western Asia gave rise to what is now the most important food crop, with some genome duplication occurring as a result of crossing related species.

    Today, common wheat, or Triticum aestivum has six chromosome sets and a genome consisting of around 16 billion base pairs – more than five times the number of DNA base pairs in humans. Rather than 25,000 genes like humans, wheat has around 100,000 genes.

    However, the limitations of genetic engineering do not mean that it is becoming any less important. On the contrary, genome editing has rung in an era of promising new techniques, which have quickly been adopted by researchers in the field of breeding and basic research.

    Methods such as Crispr/Cas9 allow them to make pinpoint changes in the genome, from deleting individual DNA building blocks to replacing entire genes. This has made it possible to bring about targeted mutations that are often indistinguishable from random, naturally occurring changes in the DNA. This precision method is dramatically speeding up conventional mutation breeding. Hundreds of research and development projects are currently under way, with new breeding lines regularly hitting the market.

    Adaptable pests

    There are several projects investigating wheat outside of Switzerland, aimed at boosting crop yield, adding nutritional value, reducing gluten content or increasing resistance to drought, pests or diseases such as powdery mildew.

    With regard to the latter, a novel and surprisingly simple approach has emerged. It is based on so-called MLO genes, which can be found in all land and cultivated plants. As it happens, switching these genes off makes wheat more resistant to powdery mildew. This resistance can be traced back to a variety of Ethiopian wheat first described in the 1940s.

    Chinese scientists recently used genome editing to successfully eliminate all six copies of MLO genes in the hexaploid genome of wheat to create a variety that is resistant to powdery mildew. “If this resistance is confirmed in field trials, it will be a real game changer,” says Beat Keller, without any hint of bitterness, despite knowing that the latest findings from China might well trump his “own” powdery mildew resistance with Pm genes.

    But the UZH professor believes his work on resistance genes is about more than just a disease and touches on a more fundamental issue: “We’re interested in how pests adapt to their host, that is, the co-evolution of pathogens and the plants’ defense mechanisms,” emphasizes the plant biologist.

    When it comes to powdery mildew, his team is currently researching triticale, a hybrid of wheat and rye first bred in the 1960s. Once resistant to powdery mildew, triticale has now also become susceptible to the harmful fungus.

    Researchers have shown that the pest has been able to adapt to the new grain by developing new hybrid forms. Keller’s research group is currently investigating the molecular basis of these interactions as part of the URPP Evolution in Action.There is still much to be explored about wheat and its potential.

    Beat Keller’s fascination with the centuries-old plant is palpable when he talks about winter wheat, which is the variety most farmers in Switzerland grow. Sown late in the fall, winter wheat needs the extended period of cold to sprout in the spring.

    The remarkably resistant plant withstands the cold and wet to grow tall and finally develop its characteristic ears in the summer. Harvested and ground to flour, the plant feeds billions of people all over the planet. “Isn’t that wonderful?” marvels Keller.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Zürich (Universität Zürich) (CH), located in the city of Zürich, is the largest university in Switzerland, with over 26,000 students. It was founded in 1833 from the existing colleges of theology, law, medicine and a new faculty of philosophy.

    Currently, the university has seven faculties: Philosophy, Human Medicine, Economic Sciences, Law, Mathematics and Natural Sciences, Theology and Veterinary Medicine. The university offers the widest range of subjects and courses of any Swiss higher education institutions.
    Since 1833

    As a member of the League of European Research Universities (EU) (LERU) and Universitas 21 (U21) network, the University of Zürich belongs to Europe’s most prestigious research institutions. In 2017, the University of Zürich became a member of the Universitas 21 (U21) network, a global network of 27 research universities from around the world, promoting research collaboration and exchange of knowledge.

    Numerous distinctions highlight the University’s international renown in the fields of medicine, immunology, genetics, neuroscience and structural biology as well as in economics. To date, the Nobel Prize has been conferred on twelve UZH scholars.

    Sharing Knowledge

    The academic excellence of the University of Zürich brings benefits to both the public and the private sectors not only in the Canton of Zürich, but throughout Switzerland. Knowledge is shared in a variety of ways: in addition to granting the general public access to its twelve museums and many of its libraries, the University makes findings from cutting-edge research available to the public in accessible and engaging lecture series and panel discussions.

    1. Identity of the University of Zürich

    Scholarship

    The University of Zürich (UZH) is an institution with a strong commitment to the free and open pursuit of scholarship.

    Scholarship is the acquisition, the advancement and the dissemination of knowledge in a methodological and critical manner.

    Academic freedom and responsibility

    To flourish, scholarship must be free from external influences, constraints and ideological pressures. The University of Zürich is committed to unrestricted freedom in research and teaching.

    Academic freedom calls for a high degree of responsibility, including reflection on the ethical implications of research activities for humans, animals and the environment.

    Universitas

    Work in all disciplines at the University is based on a scholarly inquiry into the realities of our world

    As Switzerland’s largest university, the University of Zürich promotes wide diversity in both scholarship and in the fields of study offered. The University fosters free dialogue, respects the individual characteristics of the disciplines, and advances interdisciplinary work.

    2. The University of Zurich’s goals and responsibilities

    Basic principles

    UZH pursues scholarly research and teaching, and provides services for the benefit of the public.

    UZH has successfully positioned itself among the world’s foremost universities. The University attracts the best researchers and students, and promotes junior scholars at all levels of their academic career.

    UZH sets priorities in research and teaching by considering academic requirements and the needs of society. These priorities presuppose basic research and interdisciplinary methods.

    UZH strives to uphold the highest quality in all its activities.
    To secure and improve quality, the University regularly monitors and evaluates its performance.

    Research

    UZH contributes to the increase of knowledge through the pursuit of cutting-edge research.

    UZH is primarily a research institution. As such, it enables and expects its members to conduct research, and supports them in doing so.

    While basic research is the core focus at UZH, the University also pursues applied research.

     
  • richardmitnick 7:15 am on July 6, 2022 Permalink | Reply
    Tags: "NASA Prize-Winning Experiment Could Be The Future of Artificial Photosynthesis", Agriculture, , , , ,   

    From The University of California-Riverside via “Science Alert (AU)” : “NASA Prize-Winning Experiment Could Be The Future of Artificial Photosynthesis” 

    UC Riverside bloc

    From The University of California-Riverside

    via

    ScienceAlert

    “Science Alert (AU)”

    6 JULY 2022
    DAVID NIELD

    1
    (Sarayut Thaneerat/Getty Images)

    The process of turning water, carbon dioxide, and sunlight into oxygen and energy helps plants to grow naturally – and it’s a process that scientists are looking to harness and adapt in order to produce food, fuel, and more besides.

    In a new study, scientists outline an experimental artificial photosynthesis technique, which deploys a two-step electrocatalytic process to turn carbon dioxide, water, and electricity generated by solar panels into acetate (the main component of vinegar). This acetate can then be harnessed by plants in order to grow.

    In fact, the system that the researchers have designed here is intended not just to mimic the photosynthesis that happens in nature, but to actually improve on it – in plants, only around 1 percent of the sunlight’s energy is actually turned into plant biomass, whereas here the efficiency can be multiplied by about fourfold.

    2
    An outline of the researchers’ technique. (Hann et al, Nature Food 2022)

    “With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” says chemical and environmental engineer Robert Jinkerson from the University of California, Riverside.

    The electricity conversion device or electrolyzer developed by the researchers had to be specially optimized in order to act as a growth driver for food-producing organisms, which in part meant boosting the amount of acetate and lowering the amount of salt produced.

    Further experiments by the team demonstrated that acetate-rich electrolyzer output could support a variety of organisms, including green algae, yeast, and mycelium, which produces mushrooms. To give you a comparison, algae production is about four times as energy efficient using this method compared with natural photosynthesis.

    Cowpea, tomato, tobacco, rice, canola, and green pea crops were all able to make use of the carbon in the acetate and grow without sunlight, the scientists showed. The process could be used in addition to normal photosynthesis, as well as instead of it.

    3
    Plants growing in complete darkness in an acetate medium. (Marcus Harland-Dunaway/UCR)

    “We found that a wide range of crops could take the acetate we provided and build it into the major molecular building blocks an organism needs to grow and thrive,” says Marcus Harland-Dunaway, a botany and plant scientist from UC Riverside.

    “With some breeding and engineering that we are currently working on we might be able to grow crops with acetate as an extra energy source to boost crop yields.”

    The process outlined here is so impressive that it’s one of the winners of the NASA Deep Space Food Challenge, a showcase of emerging tech that could one day help in growing food in space: imagine being able to grow crops inside underground bunkers on Mars, for instance.

    It’s not just in space where artificial photosynthesis could mark a drastic change in food production. The climate crisis means that extreme temperatures, drought, floods, and other threats to standard agricultural practices are becoming more common.

    While processes like this aren’t an excuse not to tackle climate change, they could help make food production more resilient, and mean crops could be grown in more places – in more urban areas, perhaps.

    “Using artificial photosynthesis approaches to produce food could be a paradigm shift for how we feed people,” says Jinkerson. “By increasing the efficiency of food production, less land is needed, lessening the impact agriculture has on the environment.”

    “And for agriculture in non-traditional environments, like outer space, the increased energy efficiency could help feed more crew members with less inputs.”

    The research has been published in Nature Food.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 7:39 pm on June 28, 2022 Permalink | Reply
    Tags: "Discovery Paves Way for More Sustainable Crop Cultivation Methods", Agriculture, Bacteria in non-photosynthetic leaf cells of seed plants can naturally provide nitrogen to plants., , Currently inorganic nitrogen fertilizers such as ammonia or nitrate are commonly applied to soils and damaging them., If this becomes a successful methodology it would help with a reduction of global warming by cutting the release of greenhouse gasses and environmental degradation., Nitrogen-fixing bacteria discovered hidden within leaf cells., , This discovery will pay dividends in preservation of the environment and regeneration of agricultural soils., This finding could dramatically change how we cultivate crops.   

    From Rutgers University: “Discovery Paves Way for More Sustainable Crop Cultivation Methods” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    June 7, 2022

    Megan Schumann
    848-445-1907
    megan.schumann@rutgers.edu

    1
    Confocal microscope images of clover leaves showing red-stained bacteria (arrows) within leaf cells.
    James F. White and Qiuwei Zhang/Rutgers University-New Brunswick

    Rutgers researchers have discovered that nitrogen-fixing bacteria hidden within leaf cells could lead to more efficient and sustainable methods of crop cultivation.

    The study, recently published in the journal Biology, investigated how bacteria in non-photosynthetic leaf cells of seed plants can naturally provide nitrogen to plants. Currently inorganic nitrogen fertilizers such as ammonia or nitrate are commonly applied to soils and damaging them, and causing nitrogen runoff that contaminates streams, rivers, and other water bodies.

    “Development of new crop varieties or agricultural technologies based on rebuilding and supporting native nitrogen-fixing endosymbiosis could dramatically change how we cultivate crops,” said James White, a principal investigator of the study and professor of plant biology at the School of Environmental and Biological Sciences (SEBS) at Rutgers University-New Brunswick. “This discovery will pay dividends in preservation of the environment and regeneration of agricultural soils and reduction of global warming by cutting the release of greenhouse gasses and environmental degradation that results from fertilizer runoff.”

    Prior to this study, it was commonly understood that nitrogen-fixing symbioses were limited to roots of legumes and a few other families of plants that form root nodules containing nitrogen-fixing bacteria. But by examining more than 30 species of seed plants in 18 families of monocots and dicots, the study investigators found that bacteria in leaf cells can exchange nitrogen for plant sugars.

    This discovery shows how non-domesticated plants, such as wild or weed plants, grow in non-fertile soils without the addition of nitrogen fertilizers. Instead, plants harvest nitrogen from the air using intracellular bacteria that they absorb into their cells from soils and carry in seeds.

    The most efficient of these cryptic nitrogen-transfer endosymbiosis was seen in the glandular trichomes (also known as leaf hairs) of dicot plants like hops (Humulus lupulus) and hemp (Cannabis sativa). Glandular trichomes contain terpenoids, cannabinoids, essential oils or other antioxidants that may increase efficiency of endosymbiotic nitrogen fixation by scavenging or excluding oxygen that inhibits nitrogen fixation.

    White said expanding our knowledge of how plants extract nitrogen from endosymbiotic bacteria within leaves could help growers find more efficient and sustainable ways to fertilize crops.

    “This research shows that it may be possible to support nitrogen-fixing activities by endosymbiotic bacteria in leaves by breeding plants to preserve native endosymbiosis or by applications of microbes to plant seedlings to re-establish nitrogen-fixation endosymbiosis,” he said. “Our hope is that this study will open doors to the development of new methods of crop cultivation that are more efficient and sustainable than what is currently practiced.”

    In addition to Rutgers researchers, the study involved collaborators at the U.S. Geological Survey, University of the Sacred Heart in Puerto Rico and University of the Valley in Colombia.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers-The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities and the Universities Research Association. Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center. This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health. One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 12:05 pm on June 27, 2022 Permalink | Reply
    Tags: "Rutgers Study Unveils New Carbon Mitigation Solutions to Combat Climate Change", Agriculture, , , New Jersey’s farmlands; forests and wetlands together can offset nearly 8 percent of the state’s greenhouse gas emissions., ,   

    From Rutgers University and The University of Maine: “Rutgers Study Unveils New Carbon Mitigation Solutions to Combat Climate Change” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    and

    The University of Maine

    December 7, 2021 [Just now in social media.]

    Emily Everson Layden
    908-370-3721
    ee261@echo.rutgers.edu

    1
    A horseshoe bend field in Kingswood, New Jersey. Photo courtesy of John Gattuso.

    Increasing adoption of agricultural practices such as cover cropping, grazing management and agroforestry can increase the amount of carbon stored in soils to help combat climate change, according to a new report by researchers from Rutgers University-New Brunswick and the University of Maine.

    The study explores how New Jersey’s plants and soils can help to absorb and store carbon dioxide from greenhouse gas emissions.

    New Jersey’s farmlands, forests and wetlands together can offset nearly 8 percent of the state’s greenhouse gas emissions. New Jersey’s Global Warming Response Act 80 X 50 Report notes that these lands, along with strategies to increase their carbon storage capacities, will be essential if New Jersey is to meet its 2050 emissions reduction goal.

    “Our study focused on understanding the current state of knowledge regarding the storage of carbon in agricultural soils, and on identifying the types of programs, barriers and opportunities to further carbon sequestration on ag land, with a particular emphasis on New Jersey,” said Marjorie Kaplan, co-director of the New Jersey Climate Change Resource Center at Rutgers.

    Stephanie Murphy, a co-author of the study and director of Rutgers Soil Testing Lab, said, “It is well-documented that loss of soil carbon has been occurring over many decades from certain farming practices, affecting soil health and sustainability, but modifying these practices can address some of the deficit while also using the land as a carbon sink.”

    The report outlines considerations to increase soil carbon sequestration from agronomic practices, while also providing a scan of the landscape and lessons from other states and programs that could be applicable for agriculture in New Jersey.

    “Although there is scientific debate within the research community about the amount of carbon that can be stored in soil and how best to monitor and quantify it, there are many benefits to agricultural practices like cover cropping, improved grazing management and agroforestry that can also increase soil carbon,” said Wendie Cohick, director of research for the New Jersey Agricultural Experiment Station.

    The researchers interviewed more than 50 experts in ecosystem valuation programs for natural and working lands from more than 30 governmental, nongovernmental, academic and private sector organizations. Although sequestration of carbon is not the primary driver for many programs, it is a co-benefit along with multiple ecosystem services such as promoting soil health, improved water quality, climate resiliency and flood mitigation.

    “Important co-benefits of these ecosystem services can include improved public health, enhanced biodiversity and creation of green jobs,” said Margaret Brennan, director for resources and economic development at the New Jersey Agricultural Experiment Station.

    Mark Robson, a co-author and Distinguished Professor of plant biology, said, New Jersey farm real estate value averages $14,400 per acre and ranks second nationally behind Rhode Island’s average of $16,400 per acre.

    “The strong farmland preservation program in New Jersey has saved over 241,000 acres of farmland from development,” he said. “These preserved farms and other working farmland provide an important opportunity to mitigate climate change and keep agriculture viable in New Jersey.”

    “Agriculture can definitely be part of the solution to climate change in New Jersey, and this report sets the table for how the farm community can think about where the pressure points are, so that we can move forward on programs that are a win-win for the climate and the producer,” said Brian Schilling, director of Cooperative Extension for the New Jersey Agricultural Experiment Station.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Maine is a public land-grant research university in Orono, Maine. It was established in 1865 as the land-grant college of Maine and is the flagship university of the University of Maine System. The University of Maine is one of only a few land, sea and space grant institutions in the nation. It is classified among “R2: Doctoral Universities – High research activity”.

    With an enrollment of approximately 11,500 students, The University of Maine is the state’s largest college or university. The University of Maine’s athletic teams, nicknamed the Black Bears, are Maine’s only Division I athletics program. Maine’s men’s ice hockey team has won two national championships.

    The University of Maine was founded in 1862 as a function of the Morrill Act, signed by President Abraham Lincoln. Established in 1865 as the Maine State College of Agriculture and the Mechanic Arts, the college opened on September 21, 1868 and changed its name to the University of Maine in 1897.

    By 1871, curricula had been organized in Agriculture, Engineering, and electives. The Maine Agricultural and Forest Experiment Station was founded as a division of the university in 1887. Gradually the university developed the Colleges of Life Sciences and Agriculture (later to include the School of Forest Resources and the School of Human Development), Engineering and Science, and Arts and Sciences. In 1912 the Maine Cooperative Extension, which offers field educational programs for both adults and youths, was initiated. The School of Education was established in 1930 and received college status in 1958. The School of Business Administration was formed in 1958 and was granted college status in 1965. Women have been admitted into all curricula since 1872. The first master’s degree was conferred in 1881; the first doctor’s degree in 1960. Since 1923 there has been a separate graduate school.

    Near the end of the 19th century, the university expanded its curriculum to place greater emphasis on liberal arts. As a result of this shift, faculty hired during the early 20th century included Caroline Colvin, chair of the history department and the nation’s first woman to head a major university department.

    In 1906, The Senior Skull Honor Society was founded to “publicly recognize, formally reward, and continually promote outstanding leadership and scholarship, and exemplary citizenship within the University of Maine community.”

    On April 16, 1925, 80 women met in Balentine Hall — faculty, alumnae, and undergraduate representatives — to plan a pledging of members to an inaugural honorary organization. This organization was called “The All Maine Women” because only those women closely connected with the University of Maine were elected as members. On April 22, 1925, the new members were inducted into the honor society.

    When the University of Maine System was incorporated, in 1968, the school was renamed by the legislature over the objections of the faculty to the University of Maine at Orono. This was changed back to the University of Maine in 1986.

    rutgers-campus

    Rutgers-The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities and the Universities Research Association. Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center. This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health. One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 9:18 am on June 26, 2022 Permalink | Reply
    Tags: "Better ice tower reservoirs for farming", Agriculture, Automated systems use about 1/10 the volume of water manual methods use., , Spraying less - spraying smarter, Storing irrigation water in dry high-altitude mountain villages, The automated systems do not require winter maintenance., The method-first developed in Ladakh in India is also in use in dry high-altitude locations in Chile and Kyrgyzstan., The pipes and fountains needed to make these great ice cones are relatively inexpensive and easily obtained., Towering artificial ice reservoirs – called ice stupas   

    From “EarthSky” : “Better ice tower reservoirs for farming” 

    1

    From “EarthSky”

    Originally in AGU – Advancing Earth and Space Science

    June 26, 2022
    Liza Lester

    1
    Local farmers in Ladakh, India, built these artificial ice tower reservoirs, or ice stupa, in 2019. They were 100 feet (30 meters) tall and survived into early fall, releasing more than 2 million gallons (8 million liters) of meltwater. Look closely for the small figures of people to get a feel for the great size of the ice towers. Image via Suryanarayanan Balasubramanian.

    Artificial ice tower reservoirs

    Towering artificial ice reservoirs – called ice stupas – emerged in 2014 as an accessible means of storing irrigation water in dry high-altitude mountain villages. Now, experiments with automated systems demonstrate construction of these giant ice cones – which top 100 feet (30 meters) – uses about 1/10 the volume of water manual methods use. Scientists presented this new research on June 23, 2022, at the Frontiers in Hydrology meeting in San Juan, Puerto Rico.

    Science article:
    Frontiers in Hydrology

    In the high, arid region of Ladakh, India, this improvement makes all the difference. The original, manual approach to ice-stupa construction typically lets the water flow all winter. Most of the water does not freeze and is lost. Cold temperatures help ice stupas grow, but too cold temperatures freeze water in the delivery pipes.

    Suryanarayanan Balasubramanian is a glaciologist at The University of Fribourg [Université de Fribourg; Universität Freiburg] (CH) and the lead researcher on this project. Balasubramanian said:

    “In Ladakh right now, many of the ice structures have stopped being built not because the farmers chose to stop watering. It is because the weather chose to stop working.”

    Automation can build ice reservoirs that last longer

    The best solution is to drain the pipe before it freezes. The new automated approach avoided blocked pipes. It uses information from models and weather data to predict the optimal water spray time, duration and flow rate to build ice stupas efficiently. Researchers also said they could apply the information manually.

    Many ice stupas melt by summer, but larger, more efficiently shaped ice towers last into the following year. They could potentially become permanent structures that can provide a predictable water source year-round.

    Balasubramanian said, referring to the new results:

    “The point of the experiment was to show that a better methodology exists to construct these structures and there are simple lessons that we can extract. Why is that important? It shows that these structures are limited in their potential right now. They can grow much bigger and last much longer and use much less water.”

    2
    These ice stupas are from Switzerland (left) and India (right). Image via Daniel Bürki/ Thinles Norboo/ Suryanarayanan Balasubramanian.

    Cold storage ice tower reservoirs

    Farmers make ice stupas by fountaining water into the air during the winter to fall and freeze into giant, icy stalagmites. The pipes and fountains needed to make these great ice cones are relatively inexpensive and easily obtained, which means farmers can implement them without outside aid. They can build large stupas from a flow rate of just 7.9 gallons (30 liters) per minute, or 2-3 times the flow of a typical garden hose, if applied consistently over months.

    The method-first developed in Ladakh in India is also in use in dry high-altitude locations in Chile and Kyrgyzstan. Ladakh sits higher than 9,800 feet (3,000 meters) above sea level between the Karakorum range and the Himalaya and receives less than 4 inches (10 centimeters) of rain or snow each year. Irrigation networks in this arid region depend on timely meltwater from glaciers, snow and permafrost, which are increasingly unreliable in a changing climate.

    3
    A fountain sprays water for an artificial ice reservoir in Ladakh, India. Low, steady flow over months can build ice towers 100 feet (30 meters high). Meltwater from these structures irrigates crops in spring. Image via Suryanarayanan Balasubramanian.

    Spraying less – spraying smarter

    Balasubramanian and colleagues tested an automated system. It controlled how much water they sprayed, when and for how long, based on models and weather data. Preliminary results from drone measurements found the automated system dispensed 13% of the amount of water used by the manual fountain system to create ice stupas that delivered the same or more meltwater. The automated systems also did not require winter maintenance.

    Although the automated system is currently outside the budgets of most farmers using ice stupas, Balasubramanian said:

    “…development and mass production could bring down the price and make the system easier to use. Lessons learned from the automation experiments about how to optimize the duration of spray and rate of water flow based on historical freezing rates in the locality could be applied by hand. We have just scratched the surface on these structures, because we only talk about Ladakh. But this is not just about this one location. It could be applied many places, some of which are much, much colder. We don’t know really what the upper size limit is….”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 2:11 pm on June 21, 2022 Permalink | Reply
    Tags: "Agriculture emissions pose risks to health and climate", A study led by environmental scientists at Rice University’s George R. Brown School of Engineering puts numbers to the toll of reactive nitrogen species produced in America’s croplands., Agriculture, As other sources subside Rice study shows nitrogen emissions cause greater share of pollutants., , , Nitrous oxide (N2O),   

    From Rice University: “Agriculture emissions pose risks to health and climate” 

    From Rice University

    As other sources subside Rice study shows nitrogen emissions cause greater share of pollutants.

    1
    A study by Rice environmental engineers analyzed the cost of reactive nitrogen emissions from fertilized agriculture and their risks to populations and climate. Nitrogen oxides (NOx) and ammonia (NH3) react to create air pollution in the form of particulate matter and ozone, while nitrous oxide (N2O) contributes to global warming and stratospheric ozone depletion. Illustration by Lina Luo

    The study led by Daniel Cohan, an associate professor of civil and environmental engineering, and graduate student Lina Luo quantifies emissions of nitrogen oxides, ammonia and nitrous oxide from fertilized soils over three years (2011, 2012 and 2017) and compares their impacts by region on air quality, health and climate.

    While seasonal and regional impacts differ across types of emission, the study found total annual damages from ammonia were much larger overall — at $72 billion — than those from nitrogen oxides ($12 billion) and nitrous oxide ($13 billion).

    Air pollution damages are measured by increased mortality and morbidity and the value of statistical life, while monetized damages from climate change include the threats to crops, property, ecosystem services and human health.

    On that basis, the researchers found the health impact of air pollution from ammonia and nitrogen oxides, which react to form particulate matter and ozone, substantially outweighed climate impact from nitrous oxide in all regions and years.

    The highest social costs arose from agriculture-heavy regions of California, Florida and the Midwest, where ammonia and nitrogen oxides form air pollution upwind of population centers. For both pollutants, emissions peak in the spring after fertilizers are applied.

    The study in the American Chemical Society journal Environmental Science & Technology concludes air pollution, health and climate should all be considered in future assessments of how farming practices affect reactive nitrogen emissions.

    “We always talk about how carbon dioxide and methane contribute to greenhouse gases, but nitrous oxide is about 300 times more potent than carbon dioxide for its global warming potential,” Luo said.

    She noted farming strategies that reduce greenhouse gases can increase air pollutants and vice versa. “We need to see if they can reduce all three nitrogen species — or make some tradeoffs — and still not decrease crop yield,” Luo said.

    Nitrogen is essential for crop growth, Cohan added, but the study shows the importance of controlling agricultural emissions has been largely neglected by air quality management and climate policy, even as the Environmental Protection Agency considers tightening air quality standards and the Biden administration seeks to slash greenhouse gas emissions.

    He said federal agencies have focused on controlling transportation and industrial emissions, leaving agriculture as the largest source of damaging nitrogen pollutants in the United States, a problem exacerbated by climate change and increased crop production.

    “Our group had been studying nitrogen oxide emissions for a number of years and began to realize that we can’t just focus on that,” Cohan said. “We needed to consider the range of emissions that come from soils, and we became curious about the relative impacts of different air pollutants and greenhouse gases the emanate from agricultural soils.

    “A big part of our motivation was realizing that choices in farming practices might cause some emissions to go up and other emissions to go down,” he said. For instance, switching from surface broadcast to deep injection of fertilizers would lower ammonia but raise nitrogen oxide emissions. That would benefit nearby cities sensitive to particulate matter levels, but harm regions where ozone is of more concern.

    Cohan said when all the emissions are quantified on a monetary basis, ammonia and nitrogen oxides that form air-polluting particulate matter and ozone and contribute to global warming have the greatest impact.

    “Those of us who study these pollutants for a living know how potent ammonia is, but the message hasn’t gotten through to most regulators and policymakers,” Cohan said. “In fact, ammonia is one of the most potent sources of particulate matter because of how it binds with other pollutants to have a multiplying effect.

    “That’s an important message: We need to take more steps to control ammonia,” he said.

    If there’s a silver lining, Cohan said, it’s that pollution from other sources has dropped enough to make agriculture’s impact prevalent.

    “What’s crucial is to take steps that have more of the nitrogen go to the crops, and less of it be released to the air and water,” he said. That could involve adding biochar or other amendments to soil, a topic of ongoing study at Rice.

    “Before we can do that, we needed to establish a baseline of emissions coming from the soil,” Cohan said. “This paper lays that out.”

    Co-authors of the study are research scientist Limei Ran of the United States Department of Agriculture’s Nature Resources Conservation Service, and Rice alumnus Quazi Rasool, a postdoctoral researcher at the Pacific Northwest National Laboratory, Richland, Washington.

    The Carbon Hub at Rice supported the research.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Rice University [formally William Marsh Rice University] is a private research university in Houston, Texas. It is situated on a 300-acre campus near the Houston Museum District and is adjacent to the Texas Medical Center.
    Opened in 1912 after the murder of its namesake William Marsh Rice, Rice is a research university with an undergraduate focus. Its emphasis on education is demonstrated by a small student body and 6:1 student-faculty ratio. The university has a very high level of research activity. Rice is noted for its applied science programs in the fields of artificial heart research, structural chemical analysis, signal processing, space science, and nanotechnology. Rice has been a member of the Association of American Universities since 1985 and is classified among “R1: Doctoral Universities – Very high research activity”.
    The university is organized into eleven residential colleges and eight schools of academic study, including the Wiess School of Natural Sciences, the George R. Brown School of Engineering, the School of Social Sciences, School of Architecture, Shepherd School of Music and the School of Humanities. Rice’s undergraduate program offers more than fifty majors and two dozen minors, and allows a high level of flexibility in pursuing multiple degree programs. Additional graduate programs are offered through the Jesse H. Jones Graduate School of Business and the Susanne M. Glasscock School of Continuing Studies. Rice students are bound by the strict Honor Code, which is enforced by a student-run Honor Council.
    Rice competes in 14 NCAA Division I varsity sports and is a part of Conference USA, often competing with its cross-town rival the University of Houston. Intramural and club sports are offered in a wide variety of activities such as jiu jitsu, water polo, and crew.
    The university’s alumni include more than two dozen Marshall Scholars and a dozen Rhodes Scholars. Given the university’s close links to National Aeronautics Space Agency, it has produced a significant number of astronauts and space scientists. In business, Rice graduates include CEOs and founders of Fortune 500 companies; in politics, alumni include congressmen, cabinet secretaries, judges, and mayors. Two alumni have won the Nobel Prize.

    Background

    Rice University’s history began with the demise of Massachusetts businessman William Marsh Rice, who had made his fortune in real estate, railroad development and cotton trading in the state of Texas. In 1891, Rice decided to charter a free-tuition educational institute in Houston, bearing his name, to be created upon his death, earmarking most of his estate towards funding the project. Rice’s will specified the institution was to be “a competitive institution of the highest grade” and that only white students would be permitted to attend. On the morning of September 23, 1900, Rice, age 84, was found dead by his valet, Charles F. Jones, and was presumed to have died in his sleep. Shortly thereafter, a large check made out to Rice’s New York City lawyer, signed by the late Rice, aroused the suspicion of a bank teller, due to the misspelling of the recipient’s name. The lawyer, Albert T. Patrick, then announced that Rice had changed his will to leave the bulk of his fortune to Patrick, rather than to the creation of Rice’s educational institute. A subsequent investigation led by the District Attorney of New York resulted in the arrests of Patrick and of Rice’s butler and valet Charles F. Jones, who had been persuaded to administer chloroform to Rice while he slept. Rice’s friend and personal lawyer in Houston, Captain James A. Baker, aided in the discovery of what turned out to be a fake will with a forged signature. Jones was not prosecuted since he cooperated with the district attorney, and testified against Patrick. Patrick was found guilty of conspiring to steal Rice’s fortune and he was convicted of murder in 1901 (he was pardoned in 1912 due to conflicting medical testimony). Baker helped Rice’s estate direct the fortune, worth $4.6 million in 1904 ($131 million today), towards the founding of what was to be called the Rice Institute, later to become Rice University. The board took control of the assets on April 29 of that year.

    In 1907, the Board of Trustees selected the head of the Department of Mathematics and Astronomy at Princeton University, Edgar Odell Lovett, to head the Institute, which was still in the planning stages. He came recommended by Princeton University‘s president, Woodrow Wilson. In 1908, Lovett accepted the challenge, and was formally inaugurated as the Institute’s first president on October 12, 1912. Lovett undertook extensive research before formalizing plans for the new Institute, including visits to 78 institutions of higher learning across the world on a long tour between 1908 and 1909. Lovett was impressed by such things as the aesthetic beauty of the uniformity of the architecture at the University of Pennsylvania, a theme which was adopted by the Institute, as well as the residential college system at University of Cambridge (UK) in England, which was added to the Institute several decades later. Lovett called for the establishment of a university “of the highest grade,” “an institution of liberal and technical learning” devoted “quite as much to investigation as to instruction.” [We must] “keep the standards up and the numbers down,” declared Lovett. “The most distinguished teachers must take their part in undergraduate teaching, and their spirit should dominate it all.”
    Establishment and growth

    In 1911, the cornerstone was laid for the Institute’s first building, the Administration Building, now known as Lovett Hall in honor of the founding president. On September 23, 1912, the 12th anniversary of William Marsh Rice’s murder, the William Marsh Rice Institute for the Advancement of Letters, Science, and Art began course work with 59 enrolled students, who were known as the “59 immortals,” and about a dozen faculty. After 18 additional students joined later, Rice’s initial class numbered 77, 48 male and 29 female. Unusual for the time, Rice accepted coeducational admissions from its beginning, but on-campus housing would not become co-ed until 1957.

    Three weeks after opening, a spectacular international academic festival was held, bringing Rice to the attention of the entire academic world.

    Per William Marsh Rice’s will and Rice Institute’s initial charter, the students paid no tuition. Classes were difficult, however, and about half of Rice’s students had failed after the first 1912 term. At its first commencement ceremony, held on June 12, 1916, Rice awarded 35 bachelor’s degrees and one master’s degree. That year, the student body also voted to adopt the Honor System, which still exists today. Rice’s first doctorate was conferred in 1918 on mathematician Hubert Evelyn Bray.

    The Founder’s Memorial Statue, a bronze statue of a seated William Marsh Rice, holding the original plans for the campus, was dedicated in 1930, and installed in the central academic quad, facing Lovett Hall. The statue was crafted by John Angel. In 2020, Rice students petitioned the university to take down the statue due to the founder’s history as slave owner.

    During World War II, Rice Institute was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program, which offered students a path to a Navy commission.

    The residential college system proposed by President Lovett was adopted in 1958, with the East Hall residence becoming Baker College, South Hall residence becoming Will Rice College, West Hall becoming Hanszen College, and the temporary Wiess Hall becoming Wiess College.

    In 1959, the Rice Institute Computer went online. 1960 saw Rice Institute formally renamed William Marsh Rice University. Rice acted as a temporary intermediary in the transfer of land between Humble Oil and Refining Company and NASA, for the creation of NASA’s Manned Spacecraft Center (now called Johnson Space Center) in 1962. President John F. Kennedy then made a speech at Rice Stadium reiterating that the United States intended to reach the moon before the end of the decade of the 1960s, and “to become the world’s leading space-faring nation”. The relationship of NASA with Rice University and the city of Houston has remained strong to the present day.

    The original charter of Rice Institute dictated that the university admit and educate, tuition-free, “the white inhabitants of Houston, and the state of Texas”. In 1963, the governing board of Rice University filed a lawsuit to allow the university to modify its charter to admit students of all races and to charge tuition. Ph.D. student Raymond Johnson became the first black Rice student when he was admitted that year. In 1964, Rice officially amended the university charter to desegregate its graduate and undergraduate divisions. The Trustees of Rice University prevailed in a lawsuit to void the racial language in the trust in 1966. Rice began charging tuition for the first time in 1965. In the same year, Rice launched a $33 million ($268 million) development campaign. $43 million ($283 million) was raised by its conclusion in 1970. In 1974, two new schools were founded at Rice, the Jesse H. Jones Graduate School of Management and the Shepherd School of Music. The Brown Foundation Challenge, a fund-raising program designed to encourage annual gifts, was launched in 1976 and ended in 1996 having raised $185 million. The Rice School of Social Sciences was founded in 1979.

    On-campus housing was exclusively for men for the first forty years, until 1957. Jones College was the first women’s residence on the Rice campus, followed by Brown College. According to legend, the women’s colleges were purposefully situated at the opposite end of campus from the existing men’s colleges as a way of preserving campus propriety, which was greatly valued by Edgar Odell Lovett, who did not even allow benches to be installed on campus, fearing that they “might lead to co-fraternization of the sexes”. The path linking the north colleges to the center of campus was given the tongue-in-cheek name of “Virgin’s Walk”. Individual colleges became coeducational between 1973 and 1987, with the single-sex floors of colleges that had them becoming co-ed by 2006. By then, several new residential colleges had been built on campus to handle the university’s growth, including Lovett College, Sid Richardson College, and Martel College.

    Late twentieth and early twenty-first century

    The Economic Summit of Industrialized Nations was held at Rice in 1990. Three years later, in 1993, the James A. Baker III Institute for Public Policy was created. In 1997, the Edythe Bates Old Grand Organ and Recital Hall and the Center for Nanoscale Science and Technology, renamed in 2005 for the late Nobel Prize winner and Rice professor Richard E. Smalley, were dedicated at Rice. In 1999, the Center for Biological and Environmental Nanotechnology was created. The Rice Owls baseball team was ranked #1 in the nation for the first time in that year (1999), holding the top spot for eight weeks.

    In 2003, the Owls won their first national championship in baseball, which was the first for the university in any team sport, beating Southwest Missouri State in the opening game and then the University of Texas and Stanford University twice each en route to the title. In 2008, President David Leebron issued a ten-point plan titled “Vision for the Second Century” outlining plans to increase research funding, strengthen existing programs, and increase collaboration. The plan has brought about another wave of campus constructions, including the erection the newly renamed BioScience Research Collaborative building (intended to foster collaboration with the adjacent Texas Medical Center), a new recreational center and the renovated Autry Court basketball stadium, and the addition of two new residential colleges, Duncan College and McMurtry College.

    Beginning in late 2008, the university considered a merger with Baylor College of Medicine, though the merger was ultimately rejected in 2010. Rice undergraduates are currently guaranteed admission to Baylor College of Medicine upon graduation as part of the Rice/Baylor Medical Scholars program. According to History Professor John Boles’ recent book University Builder: Edgar Odell Lovett and the Founding of the Rice Institute, the first president’s original vision for the university included hopes for future medical and law schools.

    In 2018, the university added an online MBA program, MBA@Rice.

    In June 2019, the university’s president announced plans for a task force on Rice’s “past in relation to slave history and racial injustice”, stating that “Rice has some historical connections to that terrible part of American history and the segregation and racial disparities that resulted directly from it”.

    Campus

    Rice’s campus is a heavily wooded 285-acre (115-hectare) tract of land in the museum district of Houston, located close to the city of West University Place.

    Five streets demarcate the campus: Greenbriar Street, Rice Boulevard, Sunset Boulevard, Main Street, and University Boulevard. For most of its history, all of Rice’s buildings have been contained within this “outer loop”. In recent years, new facilities have been built close to campus, but the bulk of administrative, academic, and residential buildings are still located within the original pentagonal plot of land. The new Collaborative Research Center, all graduate student housing, the Greenbriar building, and the Wiess President’s House are located off-campus.

    Rice prides itself on the amount of green space available on campus; there are only about 50 buildings spread between the main entrance at its easternmost corner, and the parking lots and Rice Stadium at the West end. The Lynn R. Lowrey Arboretum, consisting of more than 4000 trees and shrubs (giving birth to the legend that Rice has a tree for every student), is spread throughout the campus.
    The university’s first president, Edgar Odell Lovett, intended for the campus to have a uniform architecture style to improve its aesthetic appeal. To that end, nearly every building on campus is noticeably Byzantine in style, with sand and pink-colored bricks, large archways and columns being a common theme among many campus buildings. Noteworthy exceptions include the glass-walled Brochstein Pavilion, Lovett College with its Brutalist-style concrete gratings, Moody Center for the Arts with its contemporary design, and the eclectic-Mediterranean Duncan Hall. In September 2011, Travel+Leisure listed Rice’s campus as one of the most beautiful in the United States.

    The university and Houston Independent School District jointly established The Rice School-a kindergarten through 8th grade public magnet school in Houston. The school opened in August 1994. Through Cy-Fair ISD Rice University offers a credit course based summer school for grades 8 through 12. They also have skills based classes during the summer in the Rice Summer School.

    Innovation District

    In early 2019 Rice announced the site where the abandoned Sears building in Midtown Houston stood along with its surrounding area would be transformed into the “The Ion” the hub of the 16-acre South Main Innovation District. President of Rice David Leebron stated “We chose the name Ion because it’s from the Greek ienai, which means ‘go’. We see it as embodying the ever-forward motion of discovery, the spark at the center of a truly original idea.”

    Students of Rice and other Houston-area colleges and universities making up the Student Coalition for a Just and Equitable Innovation Corridor are advocating for a Community Benefits Agreement (CBA)-a contractual agreement between a developer and a community coalition. Residents of neighboring Third Ward and other members of the Houston Coalition for Equitable Development Without Displacement (HCEDD) have faced consistent opposition from the City of Houston and Rice Management Company to a CBA as traditionally defined in favor of an agreement between the latter two entities without a community coalition signatory.

    Organization

    Rice University is chartered as a non-profit organization and is governed by a privately appointed board of trustees. The board consists of a maximum of 25 voting members who serve four-year terms. The trustees serve without compensation and a simple majority of trustees must reside in Texas including at least four within the greater Houston area. The board of trustees delegates its power by appointing a president to serve as the chief executive of the university. David W. Leebron was appointed president in 2004 and succeeded Malcolm Gillis who served since 1993. The provost six vice presidents and other university officials report to the president. The president is advised by a University Council composed of the provost, eight members of the Faculty Council, two staff members, one graduate student, and two undergraduate students. The president presides over a Faculty Council which has the authority to alter curricular requirements, establish new degree programs, and approve candidates for degrees.

    The university’s academics are organized into several schools. Schools that have undergraduate and graduate programs include:

    The Rice University School of Architecture
    The George R. Brown School of Engineering
    The School of Humanities
    The Shepherd School of Music
    The Wiess School of Natural Sciences
    The Rice University School of Social Sciences

    Two schools have only graduate programs:

    The Jesse H. Jones Graduate School of Management
    The Susanne M. Glasscock School of Continuing Studies

    Rice’s undergraduate students benefit from a centralized admissions process which admits new students to the university as a whole, rather than a specific school (the schools of Music and Architecture are decentralized). Students are encouraged to select the major path that best suits their desires; a student can later decide that they would rather pursue study in another field or continue their current coursework and add a second or third major. These transitions are designed to be simple at Rice with students not required to decide on a specific major until their sophomore year of study.

    Rice’s academics are organized into six schools which offer courses of study at the graduate and undergraduate level, with two more being primarily focused on graduate education, while offering select opportunities for undergraduate students. Rice offers 360 degrees in over 60 departments. There are 40 undergraduate degree programs, 51 masters programs, and 29 doctoral programs.

    Faculty members of each of the departments elect chairs to represent the department to each School’s dean and the deans report to the Provost who serves as the chief officer for academic affairs.

    Rice Management Company

    The Rice Management Company manages the $6.5 billion Rice University endowment (June 2019) and $957 million debt. The endowment provides 40% of Rice’s operating revenues. Allison Thacker is the President and Chief Investment Officer of the Rice Management Company, having joined the university in 2011.

    Academics

    Rice is a medium-sized highly residential research university. The majority of enrollments are in the full-time four-year undergraduate program emphasizing arts & sciences and professions. There is a high graduate coexistence with the comprehensive graduate program and a very high level of research activity. It is accredited by the Southern Association of Colleges and Schools Commission on Colleges as well as the professional accreditation agencies for engineering, management, and architecture.

    Each of Rice’s departments is organized into one of three distribution groups, and students whose major lies within the scope of one group must take at least 3 courses of at least 3 credit hours each of approved distribution classes in each of the other two groups, as well as completing one physical education course as part of the LPAP (Lifetime Physical Activity Program) requirement. All new students must take a Freshman Writing Intensive Seminar (FWIS) class, and for students who do not pass the university’s writing composition examination (administered during the summer before matriculation), FWIS 100, a writing class, becomes an additional requirement.

    The majority of Rice’s undergraduate degree programs grant B.S. or B.A. degrees. Rice has recently begun to offer minors in areas such as business, energy and water sustainability, and global health.

    Student body

    As of fall 2014, men make up 52% of the undergraduate body and 64% of the professional and post-graduate student body. The student body consists of students from all 50 states, including the District of Columbia, two U.S. Territories, and 83 foreign countries. Forty percent of degree-seeking students are from Texas.

    Research centers and resources

    Rice is noted for its applied science programs in the fields of nanotechnology, artificial heart research, structural chemical analysis, signal processing and space science.

    Rice Alliance for Technology and Entrepreneurship – supports entrepreneurs and early-stage technology ventures in Houston and Texas through education, collaboration, and research, ranked No. 1 among university business incubators.
    Baker Institute for Public Policy – a leading nonpartisan public policy think-tank
    BioScience Research Collaborative (BRC) – interdisciplinary, cross-campus, and inter-institutional resource between Rice University and Texas Medical Center
    Boniuk Institute – dedicated to religious tolerance and advancing religious literacy, respect and mutual understanding
    Center for African and African American Studies – fosters conversations on topics such as critical approaches to race and racism, the nature of diasporic histories and identities, and the complexity of Africa’s past, present and future
    Chao Center for Asian Studies – research hub for faculty, students and post-doctoral scholars working in Asian studies
    Center for the Study of Women, Gender, and Sexuality (CSWGS) – interdisciplinary academic programs and research opportunities, including the journal Feminist Economics
    Data to Knowledge Lab (D2K) – campus hub for experiential learning in data science
    Digital Signal Processing (DSP) – center for education and research in the field of digital signal processing
    Ethernest Hackerspace – student-run hackerspace for undergraduate engineering students sponsored by the ECE department and the IEEE student chapter
    Humanities Research Center (HRC) – identifies, encourages, and funds innovative research projects by faculty, visiting scholars, graduate, and undergraduate students in the School of Humanities and beyond
    Institute of Biosciences and Bioengineering (IBB) – facilitates the translation of interdisciplinary research and education in biosciences and bioengineering
    Ken Kennedy Institute for Information Technology – advances applied interdisciplinary research in the areas of computation and information technology
    Kinder Institute for Urban Research – conducts the Houston Area Survey, “the nation’s longest running study of any metropolitan region’s economy, population, life experiences, beliefs and attitudes”
    Laboratory for Nanophotonics (LANP) – a resource for education and research breakthroughs and advances in the broad, multidisciplinary field of nanophotonics
    Moody Center for the Arts – experimental arts space featuring studio classrooms, maker space, audiovisual editing booths, and a gallery and office space for visiting national and international artists
    OpenStax CNX (formerly Connexions) and OpenStax – an open source platform and open access publisher, respectively, of open educational resources
    Oshman Engineering Design Kitchen (OEDK) – space for undergraduate students to design, prototype and deploy solutions to real-world engineering challenges
    Rice Cinema – an independent theater run by the Visual and Dramatic Arts department at Rice which screens documentaries, foreign films, and experimental cinema and hosts film festivals and lectures since 1970
    Rice Center for Engineering Leadership (RCEL) – inspires, educates, and develops ethical leaders in technology who will excel in research, industry, non-engineering career paths, or entrepreneurship
    Religion and Public Life Program (RPLP) – a research, training and outreach program working to advance understandings of the role of religion in public life
    Rice Design Alliance (RDA) – outreach and public programs of the Rice School of Architecture
    Rice Center for Quantum Materials (RCQM) – organization dedicated to research and higher education in areas relating to quantum phenomena
    Rice Neuroengineering Initiative (NEI) – fosters research collaborations in neural engineering topics
    Rice Space Institute (RSI) – fosters programs in all areas of space research
    Smalley-Curl Institute for Nanoscale Science and Technology (SCI) – the nation’s first nanotechnology center
    Welch Institute for Advanced Materials – collaborative research institute to support the foundational research for discoveries in materials science, similar to the model of Salk Institute and Broad Institute
    Woodson Research Center Special Collections & Archives – publisher of print and web-based materials highlighting the department’s primary source collections such as the Houston African American, Asian American, and Jewish History Archives, University Archives, rare books, and hip hop/rap music-related materials from the Swishahouse record label and Houston Folk Music Archive, etc.

    Residential colleges

    In 1957, Rice University implemented a residential college system, which was proposed by the university’s first president, Edgar Odell Lovett. The system was inspired by existing systems in place at University of Oxford (UK) and University of Cambridge (UK) and at several other universities in the United States, most notably Yale University. The existing residences known as East, South, West, and Wiess Halls became Baker, Will Rice, Hanszen, and Wiess Colleges, respectively.

    Student-run media

    Rice has a weekly student newspaper (The Rice Thresher), a yearbook (The Campanile), college radio station (KTRU Rice Radio), and now defunct, campus-wide student television station (RTV5). They are based out of the RMC student center. In addition, Rice hosts several student magazines dedicated to a range of different topics; in fact, the spring semester of 2008 saw the birth of two such magazines, a literary sex journal called Open and an undergraduate science research magazine entitled Catalyst.

    The Rice Thresher is published every Wednesday and is ranked by Princeton Review as one of the top campus newspapers nationally for student readership. It is distributed around campus, and at a few other local businesses and has a website. The Thresher has a small, dedicated staff and is known for its coverage of campus news, open submission opinion page, and the satirical Backpage, which has often been the center of controversy. The newspaper has won several awards from the College Media Association, Associated Collegiate Press and Texas Intercollegiate Press Association.

    The Rice Campanile was first published in 1916 celebrating Rice’s first graduating class. It has published continuously since then, publishing two volumes in 1944 since the university had two graduating classes due to World War II. The website was created sometime in the early to mid 2000’s. The 2015 won the first place Pinnacle for best yearbook from College Media Association.

    KTRU Rice Radio is the student-run radio station. Though most DJs are Rice students, anyone is allowed to apply. It is known for playing genres and artists of music and sound unavailable on other radio stations in Houston, and often, the US. The station takes requests over the phone or online. In 2000 and 2006, KTRU won Houston Press’ Best Radio Station in Houston. In 2003, Rice alum and active KTRU DJ DL’s hip-hip show won Houston PressBest Hip-hop Radio Show. On August 17, 2010, it was announced that Rice University had been in negotiations to sell the station’s broadcast tower, FM frequency and license to the University of Houston System to become a full-time classical music and fine arts programming station. The new station, KUHA, would be operated as a not-for-profit outlet with listener supporters. The FCC approved the sale and granted the transfer of license to the University of Houston System on April 15, 2011, however, KUHA proved to be an even larger failure and so after four and a half years of operation, The University of Houston System announced that KUHA’s broadcast tower, FM frequency and license were once again up for sale in August 2015. KTRU continued to operate much as it did previously, streaming live on the Internet, via apps, and on HD2 radio using the 90.1 signal. Under student leadership, KTRU explored the possibility of returning to FM radio for a number of years. In spring 2015, KTRU was granted permission by the FCC to begin development of a new broadcast signal via LPFM radio. On October 1, 2015, KTRU made its official return to FM radio on the 96.1 signal. While broadcasting on HD2 radio has been discontinued, KTRU continues to broadcast via internet in addition to its LPFM signal.

    RTV5 is a student-run television network available as channel 5 on campus. RTV5 was created initially as Rice Broadcast Television in 1997; RBT began to broadcast the following year in 1998, and aired its first live show across campus in 1999. It experienced much growth and exposure over the years with successful programs like Drinking with Phil, The Meg & Maggie Show, which was a variety and call-in show, a weekly news show, and extensive live coverage in December 2000 of the shut down of KTRU by the administration. In spring 2001, the Rice undergraduate community voted in the general elections to support RBT as a blanket tax organization, effectively providing a yearly income of $10,000 to purchase new equipment and provide the campus with a variety of new programming. In the spring of 2005, RBT members decided the station needed a new image and a new name: Rice Television 5. One of RTV5’s most popular shows was the 24-hour show, where a camera and couch placed in the RMC stayed on air for 24 hours. One such show is held in fall and another in spring, usually during a weekend allocated for visits by prospective students. RTV5 has a video on demand site at rtv5.rice.edu. The station went off the air in 2014 and changed its name to Rice Video Productions. In 2015 the group’s funding was threatened, but ultimately maintained. In 2016 the small student staff requested to no longer be a blanket-tax organization. In the fall of 2017, the club did not register as a club.

    The Rice Review, also known as R2, is a yearly student-run literary journal at Rice University that publishes prose, poetry, and creative nonfiction written by undergraduate students, as well as interviews. The journal was founded in 2004 by creative writing professor and author Justin Cronin.

    The Rice Standard was an independent, student-run variety magazine modeled after such publications as The New Yorker and Harper’s. Prior to fall 2009, it was regularly published three times a semester with a wide array of content, running from analyses of current events and philosophical pieces to personal essays, short fiction and poetry. In August 2009, The Standard transitioned to a completely online format with the launch of their redesigned website, http://www.ricestandard.org. The first website of its kind on Rice’s campus, The Standard featured blog-style content written by and for Rice students. The Rice Standard had around 20 regular contributors, and the site features new content every day (including holidays). In 2017 no one registered The Rice Standard as a club within the university.

    Open, a magazine dedicated to “literary sex content,” predictably caused a stir on campus with its initial publication in spring 2008. A mixture of essays, editorials, stories and artistic photography brought Open attention both on campus and in the Houston Chronicle. The third and last annual edition of Open was released in spring of 2010.

    Athletics

    Rice plays in NCAA Division I athletics and is part of Conference USA. Rice was a member of the Western Athletic Conference before joining Conference USA in 2005. Rice is the second-smallest school, measured by undergraduate enrollment, competing in NCAA Division I FBS football, only ahead of Tulsa.

    The Rice baseball team won the 2003 College World Series, defeating Stanford, giving Rice its only national championship in a team sport. The victory made Rice University the smallest school in 51 years to win a national championship at the highest collegiate level of the sport. The Rice baseball team has played on campus at Reckling Park since the 2000 season. As of 2010, the baseball team has won 14 consecutive conference championships in three different conferences: the final championship of the defunct Southwest Conference, all nine championships while a member of the Western Athletic Conference, and five more championships in its first five years as a member of Conference USA. Additionally, Rice’s baseball team has finished third in both the 2006 and 2007 College World Series tournaments. Rice now has made six trips to Omaha for the CWS. In 2004, Rice became the first school ever to have three players selected in the first eight picks of the MLB draft when Philip Humber, Jeff Niemann, and Wade Townsend were selected third, fourth, and eighth, respectively. In 2007, Joe Savery was selected as the 19th overall pick.

    Rice has been very successful in women’s sports in recent years. In 2004–05, Rice sent its women’s volleyball, soccer, and basketball teams to their respective NCAA tournaments. The women’s swim team has consistently brought at least one member of their team to the NCAA championships since 2013. In 2005–06, the women’s soccer, basketball, and tennis teams advanced, with five individuals competing in track and field. In 2006–07, the Rice women’s basketball team made the NCAA tournament, while again five Rice track and field athletes received individual NCAA berths. In 2008, the women’s volleyball team again made the NCAA tournament. In 2011 the Women’s Swim team won their first conference championship in the history of the university. This was an impressive feat considering they won without having a diving team. The team repeated their C-USA success in 2013 and 2014. In 2017, the women’s basketball team, led by second-year head coach Tina Langley, won the Women’s Basketball Invitational, defeating UNC-Greensboro 74–62 in the championship game at Tudor Fieldhouse. Though not a varsity sport, Rice’s ultimate frisbee women’s team, named Torque, won consecutive Division III national championships in 2014 and 2015.

    In 2006, the football team qualified for its first bowl game since 1961, ending the second-longest bowl drought in the country at the time. On December 22, 2006, Rice played in the New Orleans Bowl in New Orleans, Louisiana against the Sun Belt Conference champion, Troy. The Owls lost 41–17. The bowl appearance came after Rice had a 14-game losing streak from 2004–05 and went 1–10 in 2005. The streak followed an internally authorized 2003 McKinsey report that stated football alone was responsible for a $4 million deficit in 2002. Tensions remained high between the athletic department and faculty, as a few professors who chose to voice their opinion were in favor of abandoning the football program. The program success in 2006, the Rice Renaissance, proved to be a revival of the Owl football program, quelling those tensions. David Bailiff took over the program in 2007 and has remained head coach. Jarett Dillard set an NCAA record in 2006 by catching a touchdown pass in 13 consecutive games and took a 15-game overall streak into the 2007 season.

    In 2008, the football team posted a 9-3 regular season, capping off the year with a 38–14 victory over Western Michigan University in the Texas Bowl. The win over Western Michigan marked the Owls’ first bowl win in 45 years.

    Rice Stadium also serves as the performance venue for the university’s Marching Owl Band, or “MOB.” Despite its name, the MOB is a scatter band that focuses on performing humorous skits and routines rather than traditional formation marching.

    Rice Owls men’s basketball won 10 conference titles in the former Southwest Conference (1918, 1935*, 1940, 1942*, 1943*, 1944*, 1945, 1949*, 1954*, 1970; * denotes shared title). Most recently, guard Morris Almond was drafted in the first round of the 2007 NBA Draft by the Utah Jazz. Rice named former Cal Bears head coach Ben Braun as head basketball coach to succeed Willis Wilson, fired after Rice finished the 2007–2008 season with a winless (0-16) conference record and overall record of 3-27.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: