Tagged: Accelerator Science Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:39 pm on July 18, 2021 Permalink | Reply
    Tags: "Fermilab and INFN sign 3 arrangements", Accelerator Science, , , FNAL Short Baseline Neutrino Program, , , , ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab and INFN sign 3 arrangements” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    July 16, 2021
    Hema Ramamoorthi

    [I do not usually cover these sort of contractual news articles; but this is a big deal for both parties. This actually strengthens the U.S. position in Particle Physics and High Energy Physics which we ceded to Europe when our idiots cancelled the Superconducting Super Collider and allowed the finding of the Higgs Boson at the Large Hdron Collider, which was at 14TeV about one third the power the SSC would have achieved. Our overall position in HEP is still strong but under the radar: many of the superconducting magnets for the LHC are built at DOE’s Brookhaven, Lawrence Berkeley, and Fermi National Laboratories. Also, there are 600 scentists on the Atlas(CH) project at Brookhaven and 1,000 scientists on CMS[CH] at Fermilab, and there are other noted scientists in our universities who do work at and for the LHC. Sorry, for the editorial, but as a science commmunicator, keeping the record straight is my job. I do not write any science as I am not any kind of scientist, but I take science news to over 1,000 readers all over the world and I want to do a good and complete job. Keeping the U.S. position in the Basic and Applied Sciences portrayed accurately is my chosen field.

    This is a great contractual agreement for both parties, on a par with all of the contractual agreements surrounding the development of SKA and SARAO. ]

    1
    Fermilab Director Nigel Lockyer (left) and INFN President Antonio Zoccoli sign the three arrangements. Credit: Fermilab and INFN.

    The U.S. Department of Energy’s Fermi National Accelerator Laboratory signed three international arrangements in June with the National Institute for Nuclear Physics, known as INFN, the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them. Under the supervision of the MIUR – Italian Ministry of Education, University and Research (IT), the INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear, particle and astroparticle physics.

    The three arrangements include:

    a Multi-Institutional Memorandum of Understanding for the FNAL Short Baseline Neutrino Program hosted at Fermilab;
    a Project Planning Document for the PIP-II particle accelerator project at Fermilab; and
    a legally binding agreement with INFN -National Laboratory of Frascati [Laboratori Nazionali di Frascati] (IT) to develop a superconducting undulator for the EuPRAXIA advanced accelerator project.

    “Our INFN partners are internationally recognized leaders in advanced particle accelerator technologies in general and superconducting radio-frequency technology in particular,” said PIP-II Project Director Lia Merminga. “Fermilab and the PIP-II project are grateful to INFN for their expertise and contributions in building a state-of-the-art particle accelerator powering the world’s most intense neutrino beam. These contributions will help drive groundbreaking discoveries in particle physics for the next 50 years.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 12:54 pm on July 13, 2021 Permalink | Reply
    Tags: "Plasma Particle Accelerators Could Find New Physics", Accelerator Science, Accelerators come in two shapes: circular (synchrotron) or linear (linac)., At the start of the 20th century scientists had little knowledge of the building blocks that form our physical world., , By the end of the century they had discovered not just all the elements that are the basis of all observed matter but a slew of even more fundamental particles that make up our cosmos., CERN CLIC collider, CERN is proposing a 100-kilometer-circumference electron-positron and proton-proton collider called the Future Circular Collider., , , , , International Linear Collider (ILC), , , , Plasma is often called the fourth state of matter., , ,   

    From Scientific American (US) : “Plasma Particle Accelerators Could Find New Physics” 

    From Scientific American (US)

    July 2021
    Chandrashekhar Joshi

    1
    Credit: Peter and Maria Hoey.

    At the start of the 20th century scientists had little knowledge of the building blocks that form our physical world. By the end of the century they had discovered not just all the elements that are the basis of all observed matter but a slew of even more fundamental particles that make up our cosmos, our planet and ourselves. The tool responsible for this revolution was the particle accelerator.

    The pinnacle achievement of particle accelerators came in 2012, when the Large Hadron Collider (LHC) uncovered the long-sought Higgs boson particle.

    The LHC is a 27-kilometer accelerating ring that collides two beams of protons with seven trillion electron volts (TeV) of energy each at CERN near Geneva.

    It is the biggest, most complex and arguably the most expensive scientific device ever built. The Higgs boson was the latest piece in the reigning theory of particle physics called the Standard Model. Yet in the almost 10 years since that discovery, no additional particles have emerged from this machine or any other accelerator.

    Have we found all the particles there are to find? Doubtful. The Standard Model of particle physics does not account for dark matter—particles that are plentiful yet invisible in the universe. A popular extension of the Standard Model called supersymmetry predicts many more particles out there than the ones we know about.

    And physicists have other profound unanswered questions such as: Are there extra dimensions of space? And why is there a great matter-antimatter imbalance in the observable universe? To solve these riddles, we will likely need a particle collider more powerful than those we have today.

    Many scientists support a plan to build the International Linear Collider (ILC), a straight-line-shaped accelerator that will produce collision energies of 250 billion (giga) electron volts (GeV).

    Though not as powerful as the LHC, the ILC would collide electrons with their antimatter counterparts, positrons—both fundamental particles that are expected to produce much cleaner data than the proton-proton collisions in the LHC. Unfortunately, the design of the ILC calls for a facility about 20 kilometers long and is expected to cost more than $10 billion—a price so high that no country has so far committed to host it.

    In the meantime, there are plans to upgrade the energy of the LHC to 27 TeV in the existing tunnel by increasing the strength of the superconducting magnets used to bend the protons. Beyond that, CERN is proposing a 100-kilometer-circumference electron-positron and proton-proton collider called the Future Circular Collider.

    Such a machine could reach the unprecedented energy of 100 TeV in proton-proton collisions. Yet the cost of this project will likely match or surpass the ILC. Even if it is built, work on it cannot begin until the LHC stops operation after 2035.

    But these gargantuan and costly machines are not the only options. Since the 1980s physicists have been developing alternative concepts for colliders. Among them is one known as a plasma-based accelerator, which shows great promise for delivering a TeV-scale collider that may be more compact and much cheaper than machines based on the present technology.

    The Particle Zoo

    The story of particle accelerators began in 1897 at the Cavendish physics laboratory at the University of Cambridge (UK).

    There J. J. Thomson created the earliest version of a particle accelerator using a tabletop cathode-ray tube like the ones used in most television sets before flat screens. He discovered a negatively charged particle—the electron.

    Soon physicists identified the other two atomic ingredients—protons and neutrons—using radioactive particles as projectiles to bombard atoms. And in the 1930s came the first circular particle accelerator—a palm-size device invented by Ernest Lawrence called the cyclotron, which could accelerate protons to about 80 kilovolts.

    2
    Ernest Lawrence’s First Cyclotron, 1930 Stock Photo – Alamy.

    Thereafter accelerator technology evolved rapidly, and scientists were able to increase the energy of accelerated charged particles to probe the atomic nucleus. These advances led to the discovery of a zoo of hundreds of subnuclear particles, launching the era of accelerator-based high-energy physics. As the energy of accelerator beams rapidly increased in the final quarter of the past century, the zoo particles were shown to be built from just 17 fundamental particles predicted by the Standard Model [above]. All of these, except the Higgs boson, had been discovered in accelerator experiments by the late 1990s. The Higgs’s eventual appearance [above] at the LHC made the Standard Model the crowning achievement of modern particle physics.

    Aside from being some of the most successful instruments of scientific discovery in history, accelerators have found a multitude of applications in medicine and in our daily lives. They are used in CT scanners, for x-rays of bones and for radiotherapy of malignant tumors. They are vital in food sterilization and for generating radioactive isotopes for myriad medical tests and treatments. They are the basis of x-ray free-electron lasers, which are being used by thousands of scientists and engineers to do cutting-edge research in physical, life and biological sciences.

    3
    Scientist tests a prototype plasma accelerator at the Facility for Advanced Accelerator Experimental Tests (FACET) at the DOE’s SLAC National Accelerator Laboratory (US) in California. Credit: Brad Plummer and SLAC National Accelerator Laboratory.

    Accelerator Basics

    Accelerators come in two shapes: circular (synchrotron) or linear (linac). All are powered by radio waves or microwaves that can accelerate particles to near light speed. At the LHC, for instance, two proton beams running in opposite directions repeatedly pass through sections of so-called radio-frequency cavities spaced along the ring.

    Radio waves inside these cavities create electric fields that oscillate between positive and negative to ensure that the positively charged protons always feel a pull forward. This pull speeds up the protons and transfers energy to them. Once the particles have gained enough energy, magnetic lenses focus the proton beams to several very precise collision points along the ring. When they crash, they produce extremely high energy densities, leading to the birth of new, higher-mass particles.

    When charged particles are bent in a circle, however, they emit “synchrotron radiation.” For any given radius of the ring, this energy loss is far less for heavier particles such as protons, which is why the LHC is a proton collider. But for electrons the loss is too great, particularly as their energy increases, so future accelerators that aim to collide electrons and positrons must either be linear colliders or have very large radii that minimize the curvature and thus the radiation the electrons emit.

    The size of an accelerator complex for a given beam energy ultimately depends on how much radio-frequency power can be pumped into the accelerating structure before the structure suffers electrical breakdown. Traditional accelerators have used copper to build this accelerating structure, and the breakdown threshold has meant that the maximum energy that can be added per meter is between 20 million and 50 million electron volts (MeV). Accelerator scientists have experimented with new types of accelerating structures that work at higher frequencies, thereby increasing the electrical breakdown threshold. They have also been working on improving the strength of the accelerating fields within superconducting cavities that are now routinely used in both synchrotrons and linacs. These advances are important and will almost certainly be implemented before any paradigm-changing concepts disrupt the highly successful conventional accelerator technologies.

    Eventually other strategies may be necessary. In 1982 the U.S. Department of Energy’s program on high-energy physics started a modest initiative to investigate entirely new ways to accelerate charged particles. This program generated many ideas; three among them look particularly promising.

    The first is called two-beam acceleration. This scheme uses a relatively cheap but very high-charge electron pulse to create high-frequency radiation in a cavity and then transfers this radiation to a second cavity to accelerate a secondary electron pulse. This concept is being tested at CERN on a machine called the Compact Linear Collider (CLIC).

    Another idea is to collide muons, which are much heavier cousins to electrons. Their larger mass means they can be accelerated in a circle without losing as much energy to synchrotron radiation as electrons do. The downside is that muons are unstable particles, with a lifetime of two millionths of a second. They are produced during the decay of particles called pions, which themselves must be produced by colliding an intense proton beam with a special target. No one has ever built a muon accelerator, but there are die-hard proponents of the idea among accelerator scientists.

    Finally, there is plasma-based acceleration. The notion originated in the 1970s with John M. Dawson of the University of California-Los Angeles (US), who proposed using a plasma wake produced by an intense laser pulse or a bunch of electrons to accelerate a second bunch of particles 1,000 or even 10,000 times faster than conventional accelerators can. This concept came to be known as the plasma wakefield accelerator.

    4

    It generated a lot of excitement by raising the prospect of miniaturizing these gigantic machines, much like the integrated circuit miniaturized electronics starting in the 1960s.

    The Fourth State of Matter

    Most people are familiar with three states of matter: solid, liquid and gas. Plasma is often called the fourth state of matter. Though relatively uncommon in our everyday experience, it is the most common state of matter in our universe. By some estimates more than 99 percent of all visible matter in the cosmos is in the plasma state—stars, for instance, are made of plasma. A plasma is basically an ionized gas with equal densities of electrons and ions. Scientists can easily form plasma in laboratories by passing electricity through a gas as in a common fluorescent tube.

    A plasma wakefield accelerator takes advantage of the kind of wake you can find trailing a motorboat or a jet plane. As a boat moves forward, it displaces water, which moves out behind the boat to form a wake. Similarly, a tightly focused but ultraintense laser pulse moving through a plasma at the speed of light can generate a relativistic wake (that is, a wake also propagating nearly at light speed) by exerting radiation pressure and displacing the plasma electrons out of its way. If, instead of a laser pulse, a high-energy, high-current electron bunch is sent through the plasma, the negative charge of these electrons can expel all the plasma electrons, which feel a repulsive force. The heavier plasma ions, which are positively charged, remain stationary. After the pulse passes by, the expelled electrons are attracted back toward the ions by the force between their negative and positive charges. The electrons move so quickly they overshoot the ions and then again feel a backward pull, setting up an oscillating wake. Because of the separation of the plasma electrons from the plasma ions, there is an electric field inside this wake.

    If a second “trailing” electron bunch follows the first “drive” pulse, the electrons in this trailing bunch can gain energy from the wake much in the same way an electron bunch is accelerated by the radio-frequency wave in a conventional accelerator. If there are enough electrons in the trailing bunch, they can absorb sufficient energy from the wake so as to dampen the electric field. Now all the electrons in the trailing bunch see a constant accelerating field and gain energy at the same rate, thereby reducing the energy spread of the beam.

    The main advantage of a plasma accelerator over other schemes is that electric fields in a plasma wake can easily be 1,000 times stronger than those in traditional radio-frequency cavities. Plus, a very significant fraction of the energy that the driver beam transfers to the wake can be extracted by the trailing bunch. These effects make a plasma wakefield-based collider potentially both more compact and cheaper than conventional colliders.

    The Future of Plasma

    Both laser- and electron-driven plasma wakefield accelerators have made tremendous progress in the past two decades. My own team at U.C.L.A. has carried out prototype experiments with SLAC National Accelerator Laboratory physicists at their Facility for Advanced Accelerator Experimental Tests (FACET) in Menlo Park, Calif.

    We injected both drive and trailing electron bunches with an initial energy of 20 GeV and found that the trailing electrons gained up to 9 GeV after traveling through a 1.3-meter-long plasma. We also achieved a gain of 4 GeV in a positron bunch using just a one-meter-long plasma in a proof-of-concept experiment. Several other labs around the world have used laser-driven wakes to produce multi-GeV energy gains in electron bunches.

    Plasma accelerator scientists’ ultimate goal is to realize a linear accelerator that collides tightly focused electron and positron, or electron and electron, beams with a total energy exceeding 1 TeV. To accomplish this feat, we would likely need to connect around 50 individual plasma accelerator stages in series, with each stage adding an energy of 10 GeV.

    Yet aligning and synchronizing the drive and the trailing beams through so many plasma accelerator stages to collide with the desired accuracy presents a huge challenge. The typical radius of the wake is less than one millimeter, and scientists must inject the trailing electron bunch with submicron accuracy. They must synchronize timing between the drive pulse and the trailing beam to less than a hundredth of a trillionth of one second. Any misalignment would lead to a degradation of the beam quality and a loss of energy as well as charge caused by oscillation of the electrons about the plasma wake axis. This loss shows up in the form of hard x-ray emission, known as betatron emission, and places a finite limit on how much energy we can obtain from a plasma accelerator.

    Other technical hurdles also stand in the way of immediately turning this idea into a collider. For instance, the primary figure of merit for a particle collider is the luminosity—basically a measure of how many particles you can squeeze through a given space in a given time. The luminosity multiplied by the cross section—or the chances that two particles will collide— tells you how many collisions of a particular kind per second you are likely to observe at a given energy. The desired luminosity for a 1-TeV electron-positron linear collider is 10^34 cm^–2s^–1. Achieving this luminosity would require the colliding beams to have an average power of 20 megawatts each—10^10 particles per bunch at a repetition rate of 10 kilohertz and a beam size at the collision point of tens of a billionth of a meter. To illustrate how difficult this is, let us focus on the average power requirement. Even if you could transfer energy from the drive beam to the accelerating beam with 50 percent efficiency, 20 megawatts of power will be left behind in the two thin plasma columns. Ideally we could partially recover this power, but it is far from a straightforward task.

    And although scientists have made substantial progress on the technology needed for the electron arm of a plasma-based linear collider, positron acceleration is still in its infancy. A decade of concerted basic science research will most likely be needed to bring positrons to the same point we have reached with electrons. Alternatively, we could collide electrons with electrons or even with protons, where one or both electron arms are based on a plasma wakefield accelerator. Another concept that scientists are exploring at CERN is modulating a many-centimeters-long proton bunch by sending it through a plasma column and using the accompanying plasma wake to accelerate an electron bunch.

    The future for plasma-based accelerators is uncertain but exciting. It seems possible that within a decade we could build 10-GeV plasma accelerators on a large tabletop for various scientific and commercial applications using existing laser and electron beam facilities. But this achievement would still put us a long way from realizing a plasma-based linear collider for new physics discoveries. Even though we have made spectacular experimental progress in plasma accelerator research, the beam parameters achieved to date are not yet what we would need for just the electron arm of a future electron-positron collider that operates at the energy frontier. Yet with the prospects for the International Linear Collider and the Future Circular Collider uncertain, our best bet may be to persist with perfecting an exotic technology that offers size and cost savings. Developing plasma technology is a scientific and engineering grand challenge for this century, and it offers researchers wonderful opportunities for taking risks, being creative, solving fascinating problems—and the tantalizing possibility of discovering new fundamental pieces of nature.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Scientific American (US) , the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 9:51 pm on July 9, 2021 Permalink | Reply
    Tags: "ATLAS measurement supports lepton universality", Accelerator Science, , , , , ,   

    From Physics Today : “ATLAS measurement supports lepton universality” 

    Physics Today bloc

    From Physics Today

    9 Jul 2021
    Christine Middleton

    The collaboration’s result is consistent with the standard-model prediction that W bosons are equally likely to decay into muons and tauons.

    Particle-physics collaborations are always on the lookout for discrepancies between their measurements and the standard model’s predictions.

    Deviations can help point the researchers in the right direction (see, for example, Physics Today, June 2021, page 14). Researchers were therefore excited when a working group combed through data from four earlier experiments performed at European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]’s now-dismantled Large Electron–Positron Collider (LEP) and found that the results were inconsistent with the standard model’s assertion of lepton universality, albeit with a probability of less than 1%.

    All three leptonic generations—electronic, muonic, and tauonic—supposedly have the same coupling to weak force–mediating W bosons. So when a W boson decays, it should be equally likely to produce any one of the leptons, along with its associated antineutrino. Several experiments at DOE’s Fermi National Accelerator Laboratory (US) and CERN have confirmed that W bosons generate electrons and muons at the same rate. But the LEP data showed that tauons were produced slightly more often than muons; the ratio of their production rates was R(τ/μ) = 1.070 ± 0.026. Other experiments studying particles that contain bottom quarks have seen hints of the same problem.

    Now the ATLAS collaboration has collected and analyzed data at the Large Hadron Collider (LHC) that resolves the apparent disagreement. The precision of the collaboration’s measurement is twice that of the LEP result, and the value, R(τ/μ) = 0.992 ± 0.013, agrees with the standard-model prediction of unity.

    The experiment exploited the fact that the LHC’s proton–proton collisions produce a large number of top–antitop quark pairs. A top quark nearly always decays into a W boson and a bottom quark, so the researchers had easy access to many W bosons whose decays they could observe. Some of the W bosons directly produced muons, whereas others produced intermediate tauons that later decayed into muons. Because of their different origins, the muons formed two populations whose signals in the detector could be differentiated by the particles’ impact parameters and transverse momenta. The ATLAS researchers analyzed tens of thousands of W-boson decays for each type of lepton, compared with only a couple thousand each in the LEP data, and counted how many took each path.

    On the whole, data now support the standard model’s prediction of lepton universality in W-boson decays. But the search continues: Hints of lepton universality violations have also been seen in beauty-meson decays at significance levels that are starting to draw attention from high-energy physicists.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Our mission

    The mission of Physics Today is to be a unifying influence for the diverse areas of physics and the physics-related sciences.

    It does that in three ways:

    • by providing authoritative, engaging coverage of physical science research and its applications without regard to disciplinary boundaries;
    • by providing authoritative, engaging coverage of the often complex interactions of the physical sciences with each other and with other spheres of human endeavor; and
    • by providing a forum for the exchange of ideas within the scientific community.”

     
  • richardmitnick 9:44 am on July 9, 2021 Permalink | Reply
    Tags: "sPHENIX Assembly Shifts into Visible High Gear", Accelerator Science, , , , , , ,   

    From DOE’s Brookhaven National Laboratory (US) : “sPHENIX Assembly Shifts into Visible High Gear” 

    From DOE’s Brookhaven National Laboratory (US)

    July 7, 2021
    Karen McNulty Walsh
    kmcnulty@bnl.gov

    Scientists, engineers, technicians, and students assemble state-of-the-art components of major detector upgrade at the Relativistic Heavy Ion Collider (RHIC).

    1
    sPHENIX is a collaboration, detector, and experiment proposed to succeed the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC).

    Brand new, state-of-the-art components for an upgraded 1000-ton particle detector are being installed at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. Known as sPHENIX, the detector is a radical makeover of the PHENIX experiment, which first began taking data at the Lab’s Relativistic Heavy Ion Collider (RHIC) in 2000. The sPHENIX upgrade will significantly enhance scientists’ ability to learn about quark-gluon plasma (QGP), an exotic form of nuclear matter created in RHIC’s energetic particle smashups.

    “RHIC has made many discoveries about the properties of QGP,” said Gunther Roland, co-spokesperson for sPHENIX and a physicist at the Massachusetts Institute of Technology. “Now, we need a new microscope to look at the structure of QGP in more detail and with higher precision. That microscope is sPHENIX.”

    sPHENIX, a project of the DOE Office of Science’s Office of Nuclear Physics, will start collecting data in 2023. When the construction is complete, the detector will be about the size of a two-story house, cylindrical in shape with an enormous superconducting magnet at its core. The magnet will bend the trajectories of charged particles produced in the collisions, while different detector components layered within and around the central core measure the energy and other properties of particles emitted from each collision. Like a giant, 3D digital camera, the detector will capture snapshots of 15,000 particle collisions per second, more than three times faster than PHENIX.

    “sPHENIX was designed specifically to take advantage of all of the accelerator improvements made to increase collision rates at RHIC over the last 20 years,” said Ed O’Brien, the sPHENIX project director.

    A team of dedicated scientists, engineers, technicians, and students has been working to build and test components for sPHENIX both at Brookhaven and at universities and collaborating institutions across the country and around the globe. They’ve designed and optimized each component, building on experience gained at RHIC and at Europe’s Large Hadron Collider (LHC). The LHC spends a portion of its time creating QGP at higher energies than at RHIC.

    ______________________________________________________________________________________________________________

    What is Quark-Gluon Plasma?

    QGP is a soup of subatomic particles called quarks and gluons. These particles ordinarily exist only as parts of other particles, including the protons and neutrons that make up the nuclei of atoms in today’s world. But for a brief instant billions of years ago, before protons and neutrons formed, the whole universe was made of free, unbound quarks and gluons. Smashing the nuclei of heavy atoms together at very high energies turns back the clock. The collisions “melt” the protons and neutrons, setting free their inner building blocks. By tracking the particles that emerge from this quark-gluon soup, scientists get clues about how the universe evolved. They also learn about the force that holds these fundamental building blocks together.
    ______________________________________________________________________________________________________________

    “Detector and analysis techniques developed at the LHC are amazing,” said Brookhaven Lab nuclear physicist Dave Morrison, the other sPHENIX co-spokesperson.

    “sPHENIX is bringing those techniques back to RHIC. Everything we’re doing now has benefitted from every single bit of R&D to make sPHENIX the best it can be and easy to assemble. We’ve moved from having architects discuss the plans for the ‘house’ to general contractors actually hammering together the two-by-fours.”

    2
    Teams worked to assemble sectors of the sPHENIX outer hadronic calorimeter in early 2021. University of Colorado-Boulder graduate students Berenice Garcia and Jeff Ouellette are in the front row.

    Assembling detector sectors

    sPHENIX nuclear physicists have been working with an international team of engineers, technicians, and others to assemble detector components. The team includes a dozen graduate students who traveled to the Lab from various collaborating institutions to perform mission critical work on the sPHENIX upgrade in the midst of the COVID-19 pandemic.

    “There is tremendous value in junior people being involved at an early stage of the experiment they will ultimately take data with,” said Dennis Perepelitsa, an sPHENIX collaborator and physics professor at the University of Colorado-Boulder (CU). “There’s just nothing like having that physical ‘hands on’ connection between the data you’re trying to understand and the detector that actually recorded it.”

    Four CU graduate students helped assemble components and test two of the major calorimeters—detector systems that measure the energy of different types of charged and uncharged particles emerging from RHIC’s collisions of ions.

    Each calorimeter is made of many separate sectors that pick up signals from particles emerging in all directions from the hot soup of quarks and gluons created in the smashups. These measurements will help scientists study how jets of particles generated by collisions with individual quarks or gluons are affected by the hot, dense soup of the quark-gluon plasma. The findings should help them understand how the properties of QGP arise from these underlying quark-and-gluon interactions.

    “I was set up to work on some initial testing of electronic components for the electromagnetic calorimeter—before they were incorporated into the calorimeter sectors—and final electronics readout testing of the finished sectors,” said Jeff Ouellette, a fifth-year Ph.D. candidate from CU, who arrived at Brookhaven in November 2020. He also helped to finish the “outer hadronic calorimeter”—made of similar detector components that will surround the solenoid magnet and measure the energy of hadrons, which are particles made of quarks.

    “Fundamentally, the design is very similar. So, it was easy to learn something while working on one detector and apply it to the other,” he said.

    Berenice Garcia, a third-year Ph.D. student from CU, joined the team at Brookhaven in January 2021.

    “Jeff Ouellette and Stefan Bathe, the scientist managing the outer hadronic calorimeter, walked us through how to assemble a sector and test it,” she said. “It was sort of like following a cooking recipe. They provided all the ingredients—tiles, signal cables, optical fibers, etc.—and all we had to do was put them together by following a series of steps.

    “The challenge came when we had to test the sector and make sure we were getting the expected signals,” she noted. “There were times where we would not get a signal at all—and so we had to figure out what part was causing this issue. Sometimes it would take minutes, but there were plenty of times where it would take hours! But that’s OK because it made us that much happier when we finally found the solution to our problem!”

    Putting together the building blocks

    When the calorimeter sectors were fully assembled and tested, it was time to start putting the detector building blocks together so they’ll be ready to start unraveling the secrets of the building blocks of matter.

    In May, the detector’s 70-ton carriage base—built at a steel machining shop in upstate New York—arrived on site at Brookhaven. This base provides the foundation for assembling the detector components from the bottom up.

    First come the lower sectors of the hadronic calorimeter, which will form an outer ring around the cylindrical superconducting solenoid magnet.

    “There are 32 sectors in all, each about 20 feet long and weighing up to 18 tons,” Morrison said. “We’ll install the ones at the bottom one sector at a time. When it gets up to the half-way point, then the solenoid magnet will get placed on top, and then the rest of the calorimeter segments will get placed around and above the magnet—kind of like you’re building a Roman arch.”

    The scientists will add silicon detectors and a Time Projection Chamber for tracking and determining the momentum of all charged particles.

    “There has been an enormous amount of progress,” Morrison said. “We’re about halfway through the construction phase and less than two years from when we’ll begin taking data.” In the world of putting together an enormous physics detector, he said, “That’s practically tomorrow!”

    3
    Assembly of sPHENIX will take place in stages, starting with the lower sectors of the outer hadronic calorimeter, then the cylindrical solenoid magnet, followed by the upper sectors of the outer calorimeter. Then (not shown) inner detector components and support systems will be added.

    Infrastructure modernization

    In addition to upgrading the detector itself, the RHIC team has also made many improvements to the PHENIX experimental hall and support buildings. These infrastructure improvements will help sPHENIX operate as efficiently as possible.

    “sPHENIX includes the latest innovations in modern, large scale, multipurpose collider detectors,” said Maria Chamizo-Llatas, Deputy Associate Laboratory Director for Strategic Planning of Future Research Programs in the Nuclear and Particle Physics Directorate at Brookhaven Lab. “Modernizing the facility is crucial to hosting such a state-of-the-art 21st century detector.”

    For example, the superconducting magnet at the core of sPHENIX has to be super cold—kept near absolute zero temperature—to carry electric current with zero resistance. That superconductivity is the feature that allows the magnet to carry high electric currents to generate very powerful magnetic fields. Such strong fields can bend the trajectories of even high-velocity charged particles like electrons and positrons.

    “The strong bending power will give us the ability to study electrons and positrons that result from the decay of other particles called upsilons,” said experiment co-spokesperson Roland. Upsilons come in three varieties with minutely small differences in mass. The strong magnetic field will allow physicists to precisely tease out the trajectories of the decay products and calculate the mass of the “parent” upsilon to distinguish among the different varieties. “This ability to cleanly separate particles with tiny differences in mass will be a defining characteristic of sPHENIX,” Roland said.

    4
    sPHENIX co-spokesperson David Morrison and sPHENIX project director Edward O’Brien stand next to the curved structure that will support the detector. Between them you can see the first two sectors of the outer hadronic calorimeter in place.

    To keep the magnet cold, Brookhaven’s Collider-Accelerator Department engineers and technicians will connect it directly into the cryogenic system that supplies liquid helium at a temperature of -452 degrees Fahrenheit to RHIC’s superconducting accelerator magnets. “This setup provides an efficient and cost-effective liquid helium source for the magnet,” said sPHENIX project engineer James Mills.

    The upgraded detector will also require additional structural support in the assembly hall and in the interaction within the RHIC ring where it will sit when taking data.

    “The overall weight of sPHENIX is not much different than the original PHENIX experiment, but sPHENIX is more compact,” said Russell Feder, the project’s chief mechanical engineer. “This smaller footprint creates more localized forces on the floor and soil substructure below it.”

    To handle the load, the team is installing additional steel reinforcement embedded in a concrete matrix. “This system will be structurally connected to the existing track system that supports the detector and allows it to be moved from the assembly area into the interaction region,” Feder said.

    “We couldn’t have done this upgrade without the support from key Brookhaven Lab organizations and the dedicated technical and engineering staff,” Chamizo-Llatas said.

    “It has been an incredible team effort to get us to this point,” agreed sPHENIX project director O’Brien. “We are getting critical contributions not only from our dozens of collaborating institutions, but also vital support from many Brookhaven Lab organizations and the U.S. Department of Energy. Without the close cooperation of everyone it would have not been possible to build a major scientific instrument during a global pandemic.”

    RHIC is a DOE Office of Science (US) User Facility.

    The transformation of PHENIX to sPHENIX and operations at RHIC are funded by the DOE Office of Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 11:46 am on July 7, 2021 Permalink | Reply
    Tags: "ALICE is “FIT” for Run 3 after last new subdetector installation", Accelerator Science, , , , , ,   

    From ALICE at CERN (CH) : “ALICE is “FIT” for Run 3 after last new subdetector installation” 

    From ALICE at CERN (CH)

    6 July, 2021

    1
    The FIT detector (Fast Interaction Trigger) was installed in the ALICE cavern during LS2 in June 2021 (Image: CERN)

    The ALICE detector is being steadily reassembled after three years of dismantling, building, testing and reinstallation of the subdetectors. This major LHC experiment received its last new subdetector on Monday, 21 June 2021, when the Fast Interaction Trigger (FIT) was lowered into the Point 2 cavern. The 300-kg disk, together with the three other FIT arrays, will serve as an interaction trigger, online luminometer, initial indicator of the vertex position and forward multiplicity counter. It is now secured next to the central tracking detectors inside the L3 magnet.

    This polyvalent subdetector was conceptualised, reviewed and approved by the ALICE Technical Board in early 2013. It is the fruit of an intense R&D effort involving prototype tests at the Proton Synchrotron. Among the 60-plus scientists from 17 institutions who contributed to the FIT design, construction, testing and installation, the Muscovite team at the Russian Institute for Nuclear Research faced major challenges with the design of the new, fully digital, front-end electronics and readout system.

    FIT relies on three state-of-the-art detector technologies underpinning components grouped into five arrays surrounding the LHC beamline, at -1, +3, +17, and -19 metres from the interaction point. The diversity of the detection techniques and the scattered positions are needed in order to fulfil the subdetector’s many required functionalities. Among the three components that make up the FIT detector, the FT0 is the fastest: comprising 208 optically separated quartz radiators, its expected time resolution for high-multiplicity heavy-ion collisions is about 7 picoseconds, ranking FIT among the fastest detectors in high-energy physics experiments. This impressively precise timing is crucial for online vertex determination and for identifying charged lepton and hadron species using time-of-flight.

    The second component, a segmented scintillator called FV0, innovates with a novel light-collection scheme designed and manufactured at UNAM, Mexico. The largest of the three components, the FV0 makes use of its size to provide optimal acceptance, which is vital for extracting centrality and determining the event plane – key parameters characterising a heavy-ion collision.

    Finally, the Forward Diffractive Detector (FDD), consisting of two nearly identical scintillator arrays, can tag photon-induced or diffractive processes by recognising the absence of activity in the forward direction. It also serves as a background monitoring tool.

    Now that it is soundly wedged inside the ALICE detector, the FIT is expected to stay there until the end of Run 4. Its installation, which comes after that of the Time Projection Chamber, the Muon Forward Tracker and the Inner Tracking System, brings ALICE one step closer to the end of LS2 activities. The closing of the L3 magnet door and the installation of the final station of the muon spectrometer are scheduled to take place by the end of July and the end of August, respectively. Then a few months of commissioning will take ALICE to the start of Run 3, scheduled for the end of February 2022.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN CH in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier (CH)

     
  • richardmitnick 12:41 pm on July 6, 2021 Permalink | Reply
    Tags: Accelerator Science, , DOE's Brookhaven National Laboratory Electron-Ion Collider (EIC)in conjuction with DOE's Thomas Jefferson National Accelerator Facility., , , , , , The EIC will be a 2.4-mile-circumference particle collider-the first of its kind in the world., The EIC will draw on expertise throughout the DOE national laboratory complex and from universities and research institutions worldwide., The EIC will steer beams of high-energy polarized electrons into collisions with polarized protons and atomic nuclei to produce precision 3-D snapshots of those particles’ internal structures.   

    From DOE’s Brookhaven National Laboratory (US) : “Electron-Ion Collider Achieves Critical Decision 1 Approval” 

    From DOE’s Brookhaven National Laboratory (US)

    July 6, 2021
    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    CD-1 milestone marks start of project execution phase for next-generation nuclear physics facility that will probe the smallest building blocks of visible matter.

    1

    The Department of Energy (US) has granted Critical Decision 1 (CD-1) for the Electron-Ion Collider (EIC), a one-of-a-kind nuclear physics research facility to be built at DOE’s Brookhaven National Laboratory on Long Island. Following DOE’s approval of “mission need” (known as CD-0) in December 2019, this announcement marks the completion of the project’s definition phase and its conceptual design. Approval of CD-1 provides the authorization to begin the project execution phase, starting with preliminary design.

    “The successful completion of this important milestone recognizes the hard work of many under challenging circumstances. It also signals the EIC project is ready to turn attention to establishing a performance baseline to guide EIC construction,” said Kathleen Hogan, DOE Acting Under Secretary for Science and Energy. “We are pleased the joint EIC teams at Brookhaven National Laboratory and DOE’s Thomas Jefferson National Accelerator Facility are making sustained steady progress given the importance of the EIC to DOE’s mission and the future of the DOE Nuclear Physics program.”

    The EIC is being funded by the federal government, primarily through the DOE Office of Science (US). It will draw on expertise throughout the DOE national laboratory complex and from universities and research institutions worldwide. The total project cost is expected to range from $1.7-2.8 billion.

    “We are excited to enter the next stage of translating the plans for the Electron-Ion Collider into a state-of-the-art research facility that will open a new frontier in nuclear physics,” said Brookhaven Lab Director Doon Gibbs.

    Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, is a major partner in the project and will continue to make significant contributions.

    “Jefferson Lab is proud to continue its partnership with Brookhaven Lab, as we work together to build this next-generation research facility,” said Jefferson Lab Director Stuart Henderson. “We at Jefferson Lab are eager to move forward on realizing the EIC. This machine will not only enable a new era of scientific discovery with its unprecedented reach inside matter but also will complement and extend the precision research continuing at our own Continuous Electron Beam Accelerator Facility.”

    3

    The EIC will be a 2.4-mile-circumference particle collider-the first of its kind in the world. It will steer beams of high-energy polarized electrons into collisions with polarized protons and atomic nuclei to produce precision 3-D snapshots of those particles’ internal structures. Experiments at the EIC will help scientists unlock the secrets of the strongest force in nature and explore how tiny particles called quarks and gluons build up the mass, spin, and other properties of all visible matter.

    The world-leading science that an EIC will enable and the technological innovations needed to make it a reality have the potential to power the technologies of tomorrow. The benefits will extend beyond physics to advance health and medicine, national security, nuclear energy, radioisotope production, and industrial uses of particle beams.

    New York State has made a substantial commitment to the project. About $100 million in NY State funding will support the construction of new infrastructure at Brookhaven Lab, including buildings and roads essential for the EIC.

    “New York State is proud to partner with the federal government and Brookhaven Lab to site the world’s first polarized electron-ion collider, and the first new collider built in the United States in decades, here on Long Island,” said Empire State Development Acting Commissioner and President & CEO-Designate Eric Gertler. “This project ensures that Brookhaven Lab and New York State remain a leader in the field of scientific discovery, while creating thousands of jobs and generating billions of dollars in new economic activity.”
    EIC design

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 11:40 am on July 6, 2021 Permalink | Reply
    Tags: "The odd(eron) couple", Accelerator Science, , , , , FNAL Tevatron DØ detector, , , , ,   

    From Symmetry: “The odd(eron) couple” 

    Symmetry Mag

    From Symmetry

    07/06/21
    Sarah Charley

    Scientists discovered a new particle by comparing data recorded at the LHC and the Tevatron.


    In 2018, physicist Carlos Avila received a thrilling request from an old colleague.

    “It was the type of call that every scientist wants to have,” says Avila, who is a professor at the University of The Andes [Universidad de los Andes] (COL).

    The TOTEM experiment at CERN near Geneva, Switzerland, had recently announced evidence for an elusive quasi-particle that had been a missing link in physicists’ understanding of protons.

    But according to physicist Christophe Royon, the “TOTEM data alone was not enough.” To get the complete picture, Royon, who is a physicist at the University of Kansas (US), wanted to revisit data from the DØ experiment at the Tevatron, a particle accelerator that operated between 1987 and 2011 at the DOE’s Fermi National Accelerator Laboratory (US).

    “It was very exciting that these old measurements we had published in 2012 were still very important and could still play a role in this ongoing research,” Avila says.

    Conducting a joint analysis with two experiments from different generations wasn’t easy. It required rewriting decades-old software and inventing a new way to compare different types of data. In the end, the collaboration led to the discovery of a new particle: the odderon.

    Past-generation accelerator

    The Tevatron and its two experiments—DØ and CDF—rose to fame in 1995 with the discovery of the top quark, the heaviest known fundamental particle.

    “It was really a high point,” says DØ co-spokesperson Paul Grannis. “Everybody was walking on air.”

    At the time of the top quark discovery, CERN was constructing a new particle accelerator, the Large Hadron Collider [above], designed to reach energies an order of magnitude greater than the Tevatron. As the name suggests, the LHC collides a type of subatomic particle called hadrons, usually protons. The Tevatron also used protons, but collided them with their antimatter equivalents, antiprotons.

    The LHC started colliding protons in March 2010. A year and a half later, operators at Fermilab threw a big red switch and reverentially ended operations at the Tevatron. Over the next few years, Grannis watched the DØ collaboration shrink from several hundred scientists to just a handful of active researchers.

    “The people move on,” Grannis says. “There is less and less memory of the details of the experiment.”

    Avila and Royon were among the physicists that transitioned from DØ at the Tevatron to experiments at the LHC. Before bidding adieu, Avila worked on one last paper that compared DØ’s results with the first data from the LHC’s TOTEM experiment. Even though the energies of the two accelerators were different, many theorists expected DØ and TOTEM’s results to look similar. But they didn’t.

    “The DØ paper said that—despite all possible interpretation—they did not have the same pattern as seen at the LHC,” says TOTEM spokesperson Simone Giani. “That paper was the spark that triggered us to see the possibility of working together.”

    When protons don’t collide

    DØ and TOTEM were both looking at patterns from a type of interaction called elastic scattering, in which fast-moving hadrons meet and exchange particles without breaking apart. Grannis likens it to two hockey players passing a heavy puck.

    “If Sam slides a big hockey puck to Flo, Sam is going to recoil when he throws it, and Flo will recoil when she catches it,” he says.

    Like the hockey players, the hadrons drift off course after passing the “puck.” Both DØ and TOTEM have specialized detectors a few hundred meters from the interaction points to capture the deflected “Sams” and “Flos.” By measuring their momenta and how much their trajectories changed, physicists can deduce the properties of the puck that passed between them.

    Gluons à la carte

    In the elastic scattering that DØ and TOTEM study, these subatomic pucks are almost exclusively gluons: force-carrying subatomic particles that live inside hadrons. Because of quantum mechanical conservation laws, the exchanged gluons must always clump with other gluons. Scientists study these gluon-clump exchanges to learn about the structure of matter.

    “Every time we turn on a new accelerator, we hope to reach a high enough energy to see the internal workings of protons,” Giani says. “There is this ambition to purely distill the effect of the gluons and not that of the quarks.”

    Scattering data had already revealed that gluons can clump in even numbers and move between passing hadrons. But scientists were unsure if this same principle would apply to clumps consisting of an odd number of gluons. Theorists predicted the existence of these odd-numbered clumps, which they called odderons, 50 years ago. But odderons had never been observed experimentally.

    An emerging puzzle

    When physicists build a new flagship accelerator, they almost always make a major leap in energy. But they also make other changes, such as what kinds of particles to use in the collider. Because of this, comparing scattering data from different generations of accelerators—such as the Tevatron and LHC—has been difficult.

    “It has been impossible to disentangle if the scattering discrepancies are because of the intrinsic differences between protons and antiprotons, or because the energy of the accelerator is different every time,” Giani says.

    But physicists realized that these discrepancies between the Tevatron and LHC might be a blessing and not a curse. In fact, they thought they could be essential for uncovering the odderon.

    The matter or antimatter nature of the colliding hadrons would be unimportant if odderons didn’t exist and all the gluon “pucks” contained an even number of gluons. But the identities of these hadronic “Sams” and “Flos” (and specifically, whether Sam and Flo are both made from matter, or whether one of them is made from antimatter) should influence how easily they can exchange odderons.

    “The cleanest way to observe the odderon would be to look for differences between proton-proton and proton-antiproton interactions,” says Royon. “And what is the only recently available data for proton-antiproton interactions? This is the Tevatron.”

    Blast from the past

    The plan for TOTEM to work with DØ solidified in 2018 over drinks at CERN’s Restaurant 1.

    “When we did a rough comparison [between the Tevatron and LHC results] on a piece of paper, we already saw some differences,” Royon says. “This was the starting point.”

    A few months later, Avila was remotely logging into his old Fermilab account and trying to access the approximately 20 gigabytes of Tevatron data that he and his colleagues had analyzed years earlier.

    “The first time we tried to look at the data, none of the codes that we were using 10 years ago were working,” Avila says. “The software was already obsolete. We had to restore all the software and put it together with newer versions.”

    Another big challenge was comparing the Tevatron data with the LHC data and compensating for the different energies of the two accelerators. “That was the tricky part,” Grannis says.

    The DØ and TOTEM researchers regularly met over Zoom to check in on their progress and discuss ideas for how they could compare their data in the same energy regime.

    “The DØ people were concentrating on extracting the best possible information from DØ data, and the TOTEM people were doing the same for TOTEM,” Royon says. “My job was to unify the two communities.”

    If the odderon didn’t exist, then DØ and TOTEM should have seen the same scattering patterns in their data after adjusting for the energy differences between the Tevatron and LHC. But no matter how they processed the data, the scattering patterns remained distinct.

    “We did many cross checks,” Royon says. “It took one year to make sure we were correct.”

    The discrepancy between the proton-proton and proton-antiproton data showed that these hadrons were passing a new kind of subatomic puck. When combined with the 2018 TOTEM analysis, they had a high enough statistical significance to claim a discovery: They had finally found the odderon.

    An international team of scientists worked on the research. The US contribution was funded by the Department of Energy (US) and the National Science Foundation (US). “This is definitely the result of hard work from hundreds of people originating from everywhere in the world,” Royon says.

    For Avila, the discovery was just one of the many bonuses associated with teaming up with his old DØ colleagues on this new project. “You build strong friendships while doing research,” he says. “Even if you don’t stay in touch closely, you know these people and you know that working with them is really exciting.”

    Avila also says this discovery shows the value of keeping the legacy of older experiments alive.

    “We shouldn’t forget about this old data,” Avila says. “It can still bring new details about how nature behaves. It has a good scientific value no matter how many years have passed.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:48 pm on July 2, 2021 Permalink | Reply
    Tags: "MoEDAL bags a first", Accelerator Science, , , , Magnetic Monopoles: hypothetical particles with either a “north” or a “south” magnetic charge instead of both., MoEDAL has searched for magnetic monopoles produced through a process called the Schwinger mechanism., Nobel Prize winner Julian Schwinger showed that pairs of particles with electrical charge can be spontaneously created in a strong electric field., , , , The MoEDAL researchers used a device called a SQUID magnetometer to scan the blocks for any trapped magnetic charges belonging to Schwinger monopoles., The team exposed the blocks to lead–lead collisions produced by the LHC in November 2018 just before the collider was shut down for maintenance.   

    From European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]: “MoEDAL bags a first” 


    Cern New Bloc

    Cern New Particle Event

    From European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]

    2 July, 2021
    Ana Lopes

    1
    The MoEDAL experiment, seen here during installation in the LHC tunnel. (Image: CERN)

    The Monopole and Exotics Detector [below] at the Large Hadron Collider (MoEDAL) does what it says on the tin. It searches for magnetic monopoles – hypothetical particles with either a “north” or a “south” magnetic charge instead of both – and other exotic theoretical particles. These searches have so far come up empty-handed, but they have delivered crucial information to help guide future searches. Now, in a first for an experiment at a particle collider, MoEDAL has searched for magnetic monopoles produced through a process called the Schwinger mechanism.

    Nobel Prize winner Julian Schwinger showed that pairs of particles with electrical charge can be spontaneously created in a strong electric field. Similarly, pairs of magnetic monopoles could be spontaneously created in a strong magnetic field. Compared to other means of producing magnetic monopoles, this process, known as the Schwinger mechanism, has advantages, including that the monopoles should be created at a greater rate, thus increasing the chances of spotting them.

    The MoEDAL team usually looks for magnetic monopoles by exposing the experiment’s “magnetic monopole trappers”, which consist of 800 kg of aluminium blocks, to proton–proton collisions produced at the Large Hadron Collider (LHC). To search for Schwinger magnetic monopoles, however, the team exposed the blocks to lead–lead collisions produced by the LHC in November 2018 just before the collider was shut down for maintenance.

    Lead–lead collisions at the LHC generate extremely strong magnetic fields, and the November 2018 run generated a maximum magnetic field that was more than ten thousand times stronger than the strongest magnetic fields in the cosmos, which are found on the surfaces of fast-spinning neutron stars called magnetars, and ten million times stronger than the field strength required to create Schwinger monopoles. Therefore, these collisions could have produced such monopoles.

    After exposing the blocks to the lead–lead collisions, the MoEDAL researchers used a device called a SQUID magnetometer to scan the blocks for any trapped magnetic charges belonging to Schwinger monopoles. The researchers found no signs of such monopoles in the blocks, but the lead–lead collision data allowed them to rule out the existence of Schwinger monopoles that have masses up to 75 GeV/c^2, where c is the speed of light, for magnetic charges ranging from 1 to 3 base units of magnetic charge.

    “A unique feature of the Schwinger monopoles is that they are not point-like, they have a finite size,” explains MoEDAL spokesperson James Pinfold. “Our mass bound is the first lower mass limit for finite-size monopoles from a collider search, and it’s tighter than previous similar mass bounds, such as that obtained from neutron-star data.”

    The MoEDAL team will continue its searches during the next run of the LHC, which will start in 2022 and deliver more proton–proton and lead–lead collision data for analysis.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier


    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS

    ALICE

    CMS

    LHCb

    LHC

    OTHER PROJECTS AT CERN

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU)[CERN] AEGIS.


    CERN FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles. Such particles are dominantly produced along the beam collision axis and may be long-lived particles, travelling hundreds of metres before decaying. The existence of such new particles is predicted by many models beyond the Standard Model that attempt to solve some of the biggest puzzles in physics, such as the nature of dark matter and the origin of neutrino masses.

     
  • richardmitnick 8:30 pm on June 28, 2021 Permalink | Reply
    Tags: Accelerator Science, , , , , , , ,   

    From Department of Energy (US) : “DOE Invests $93 Million for New Discoveries in High Energy Physics” 

    From Department of Energy (US)

    6.28.21

    71 University-Led Projects Will Explore the Fundamental Physics that Fuels Modern Innovations.

    The U.S. Department of Energy (DOE) today announced $93 million in funding for 71 research projects that will spur new discoveries in High Energy Physics (HEP). [Better late than never. The Department of Energy (US) and the National Science Foundation (US) NSF left us out of the picture when they allowed for the cancellation by Congress in 1993 of the Superconducting Super Collider [SSC] (US) in Waxahachie, Texas without a fight. The SSC was the follow-on to the end of life for the Fermilab Tevatron which could just not reach the TeV required to find the Higgs Boson, barely reaching up to almost 2 TeV.The SSC would have reached a combined 40 TeV with its planned ring circumference of 87.1 kilometers (54.1 mi) (I have been told that the demise of the SSC was because California wanted the project and pulled out of supporting the project in Texas, taking a couple of other states out with it. In the end we got nothing. This left HEP to Europe’s European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN], the building of the Large Hadron Collider (LHC) and the finding of the Higgs Boson in Europe. The U.S has not been totally gone in HEP. The ATLAS Project has 600 scientists at DOE’s Brookhaven National Laboratory (US); The CMS project has 1000 scientists at DOE’s Fermi National Accelerator Laboratory (US) . Many of the magnets used at the LHC are built by DOE’s Lawrence Berkeley National Laboratory (US), Brookhaven and Fermilab. The SSC was a US$12 billion project. It could have happened if a few of our Bill Gates type billionaires had directed attention to keeping the project going here. Now, we are doing the same thing in Radio Astronomy. The NSF defunded the now collapsed Arecibo Radio Telescope. They are slowly pulling out of support for the Green Bank Radio Telescope. Meanwhile, Europe has committed €20 billion to Radio Astronomy. So, again, I say for HEP, better late than never. Maybe we will wake up in time for the saving of Radio Astronomy.]

    The projects—housed at 50 colleges and universities across 29 states—are exploring the basics of energy science that underlie technological advancements in medicine, computing, energy technologies, manufacturing, national security and more.

    “Particle physics plays a role in many major innovations of the 21st century, and to keep our competitive edge [what competitive edge] America must invest in the scientists and engineers that are advancing basic physical science today to create the breakthroughs of tomorrow,” said Secretary of Energy Jennifer M. Granholm. “The Department of Energy is proud to be the nation’s leading funder of physical sciences, leading to life-changing medicines, technologies and solutions that create a better future.”

    Serving as a cornerstone of America’s science efforts, DOE’s High Energy Physics program plays a major role in nurturing top scientific talent and building and sustaining the nation’s scientific workforce. For example, the pharmaceutical industry uses X-ray beams created by DOE’s particle accelerators to develop more effective drugs to fight disease, and DOE’s particle accelerators helped create the heat shrink wrap used by households and businesses across the world to keep food and produce fresh. The High Energy Physics program’s principal goal is to provide a deeper understanding of how our universe works at its most fundamental level. Particle accelerators and other tools developed in pursuing this goal often meet other needs of society.

    Projects selected in today’s announcement cover a wide range of topics at the frontiers of particle physics, including Higgs boson, neutrinos, dark matter, dark energy, quantum theory, and the search for new physics. A sample of the projects include:

    • Study of Dark Matter and the Expansion of the Universe — Researchers at the Pennsylvania State University (US) will advance the search for dark matter with the LZ (LUX-ZEPLIN) experiment one mile below the Black Hills of South Dakota (Award amount: $1,145,000).

    The Scientists at Cornell University (US) (Award amount: $100,000) and the University of Wyoming (US) (Award amount: $240,000) will utilize The Dark Energy Spectroscopic Instrument (US) to measure the effect of dark energy on the expansion of the universe.

    • Develop particle physics theory, advanced particle accelerators, and new detector technologies — Researchers at the University of Michigan (US) (Award amount: $1,060,000) are exploring particle beam acceleration. The University of Colorado (US) will develop information on elementary particle physics and high energy phenomena (Award amount: $4,163,000).

    The projects are managed by the Office of High Energy Physics within the DOE Office of Science (US).

    The full list of projects and more information can be found here.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Department of Energy (US) is a cabinet-level department of the United States Government concerned with the United States’ policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation’s nuclear weapons program; nuclear reactor production for the United States Navy; energy conservation; energy-related research; radioactive waste disposal; and domestic energy production. It also directs research in genomics. the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is led by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.

    Formation and consolidation

    In 1942, during World War II, the United States started the Manhattan Project, a project to develop the atomic bomb, under the eye of the U.S. Army Corps of Engineers. After the war in 1946, the Atomic Energy Commission (AEC) was created to control the future of the project. The Atomic Energy Act of 1946 also created the framework for the first National Laboratories. Among other nuclear projects, the AEC produced fabricated uranium fuel cores at locations such as Fernald Feed Materials Production Center in Cincinnati, Ohio. In 1974, the AEC gave way to the Nuclear Regulatory Commission, which was tasked with regulating the nuclear power industry and the Energy Research and Development Administration, which was tasked to manage the nuclear weapon; naval reactor; and energy development programs.

    The 1973 oil crisis called attention to the need to consolidate energy policy. On August 4, 1977, President Jimmy Carter signed into law The Department of Energy Organization Act of 1977 (Pub.L. 95–91, 91 Stat. 565, enacted August 4, 1977), which created the Department of Energy(US). The new agency, which began operations on October 1, 1977, consolidated the Federal Energy Administration; the Energy Research and Development Administration; the Federal Power Commission; and programs of various other agencies. Former Secretary of Defense James Schlesinger, who served under Presidents Nixon and Ford during the Vietnam War, was appointed as the first secretary.

    President Carter created the Department of Energy with the goal of promoting energy conservation and developing alternative sources of energy. He wanted to not be dependent on foreign oil and reduce the use of fossil fuels. With international energy’s future uncertain for America, Carter acted quickly to have the department come into action the first year of his presidency. This was an extremely important issue of the time as the oil crisis was causing shortages and inflation. With the Three-Mile Island disaster, Carter was able to intervene with the help of the department. Carter made switches within the Nuclear Regulatory Commission in this case to fix the management and procedures. This was possible as nuclear energy and weapons are responsibility of the Department of Energy.

    Recent

    On March 28, 2017, a supervisor in the Office of International Climate and Clean Energy asked staff to avoid the phrases “climate change,” “emissions reduction,” or “Paris Agreement” in written memos, briefings or other written communication. A DOE spokesperson denied that phrases had been banned.

    In a May 2019 press release concerning natural gas exports from a Texas facility, the DOE used the term ‘freedom gas’ to refer to natural gas. The phrase originated from a speech made by Secretary Rick Perry in Brussels earlier that month. Washington Governor Jay Inslee decried the term “a joke”.

    Facilities

    The Department of Energy operates a system of national laboratories and technical facilities for research and development, as follows:

    Ames Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Fermi National Accelerator Laboratory
    Idaho National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    National Energy Technology Laboratory
    National Renewable Energy Laboratory
    Oak Ridge National Laboratory
    Pacific Northwest National Laboratory
    Princeton Plasma Physics Laboratory
    Sandia National Laboratories
    Savannah River National Laboratory
    SLAC National Accelerator Laboratory
    Thomas Jefferson National Accelerator Facility

    Other major DOE facilities include:
    Albany Research Center
    Bannister Federal Complex
    Bettis Atomic Power Laboratory – focuses on the design and development of nuclear power for the U.S. Navy
    Kansas City Plant
    Knolls Atomic Power Laboratory – operates for Naval Reactors Program Research under the DOE (not a National Laboratory)
    National Petroleum Technology Office
    Nevada Test Site
    New Brunswick Laboratory
    Office of Fossil Energy[32]
    Office of River Protection[33]
    Pantex
    Radiological and Environmental Sciences Laboratory
    Y-12 National Security Complex
    Yucca Mountain nuclear waste repository
    Other:

    Pahute Mesa Airstrip – Nye County, Nevada, in supporting Nevada National Security Site

     
  • richardmitnick 2:52 pm on June 27, 2021 Permalink | Reply
    Tags: "ATLAS experiment measures top quark polarization", Accelerator Science, , , , , , ,   

    From CERN (CH) ATLAS via From phys.org : “ATLAS experiment measures top quark polarization” 

    From CERN (CH) ATLAS

    via

    From phys.org

    1
    Figure 1: Summary of the observed best-fit polarisation measurements with their statistical-only (green) and statistical+systematic (yellow) contours at 68% confidence level, plotted on the two-dimensional polarisation parameter space Pz’, Px’. The interior of the black circle represents the physically allowed region of parameter space. Credit: ATLAS Collaboration/CERN.

    Unique among its peers is the top quark—a fascinating particle that the scientific community has been studying in detail since the 90s.

    1
    Top Quark. https://www.thomasgmccarthy.com/topquark.

    Its large mass makes it the only quark to decay before forming bound states (a process known as hadronisation) and gives it the strongest coupling to the Higgs boson.

    3
    ATLAS observes direct interaction of Higgs boson with top quark |DOE’s Argonne National Laboratory (US).

    Theorists predict it may also interact strongly with new particles—if it does, the Large Hadron Collider (LHC) is the ideal place to find out as it is a “top-quark factory.”

    While most top quarks are produced in pairs at the LHC, collisions will occasionally produce single top quarks.

    The LHC churned out more than 42 million single top quarks during its impressive Run-2 data-taking period (2015–2018). Unlike top-quark-pair production, single top quarks are always produced via the left-handed electroweak interaction. This impacts the produced top quark’s spin direction, and in turn, the spin of its decay products. By studying singly-produced top quarks, physicists are able to examine the degree by which a top quark’s spin is aligned to a given direction (its polarization). This parameter is particularly sensitive to new physics effects. In a new result presented by the ATLAS Collaboration, physicists have measured—for the first time—the full polarization vectors for both top quarks and antiquarks.

    Tempest in a t-channel

    Among the different mechanisms that contribute to single-top-quark production, the “t-channel” dominates at the LHC. In the t-channel, a top quark decays along with another particle, known as a “spectator quark.” This spectator is crucial for measuring the top quark’s polarization, since its direction of motion is expected to coincide with the top-quark spin direction—at least, most of the time. This is not always the case; further, the spin direction should differ between top quarks and antiquarks.

    3
    Figure 2: The normalised differential cross-section measurement as a function of the cos θy angle of the charged lepton. The data, shown as the black points with statistical uncertainties, is compared with various Standard Model Monte Carlo generated predictions of the t-channel signal for both top quarks and top antiquarks. The uncertainty bands include both the statistical and systematic uncertainties. The lower panel shows the ratio of prediction to data in each bin. Credit: ATLAS Collaboration/CERN.

    To fully understand this behavior, ATLAS physicists set out to measure the full top quark and antiquark polarization vectors.

    First, they had to distinguish between top quarks produced in the t-channel and other processes that leave the same signature in the detector. Researchers searched their collision events for the characteristic features of the t-channel; namely, events with two jets in the final state (the spectator quark and the bottom quark from the top-quark decay) or a spectator quark with large pseudorapidity. Their resulting selection is quite pure in t-channel singly-produced top quarks.

    After its production, the top quark decays almost exclusively into a W boson and a bottom quark. The W boson will further decay to a pair of quarks (hadronic channel) or a lepton and a neutrino (leptonic channel). The leptonic channel is particularly interesting to physicists, as the angular distributions of the lepton are intimately related with the spin of the top quark. New results from the ATLAS Collaboration exploit this feature to provide—for the first time—the full polarization vectors for both top quarks and antiquarks (see Figure 1). There is a huge degree of polarization along the direction of the spectator quark’s jet for top quarks, and against that direction for top antiquarks.

    Furthermore, ATLAS physicists measured the top quark’s differential cross section as a function of these angular distributions. Their measurements are provided in such a way that they can be directly compared with current and future theoretical predictions. Figure 2 shows one of the three differential cross-section measurements of the t-channel production as a function of the angular distributions of the charged lepton. The results are in agreement with Standard Model predictions.

    Operator! Get me new physics on the line

    ATLAS’s new analysis also makes important inroads in the search for phenomena beyond the Standard Model. In particular, new particles that cannot be directly produced at the LHC would still have a sizeable effect on the distributions measured in this analysis. Studying these gives researchers a model-independent way to describe possible deviations from the theoretical predictions in terms of operators, which are zero in the Standard Model.

    Concretely, ATLAS researchers looked at the “OtW dipole operator.” This operator has both a real and an imaginary part; the latter being of particular interest, since it is not accessible in top pair production and non-zero values would imply a CP violation component in the top-quark sector. The new ATLAS result sets constraints on the real and imaginary part of this coefficient. At 95% confidence level, the real part is constrained within [-0.7, 1.5] and the imaginary part within [-0.7,0.2], both compatible with zero. For the imaginary part, the provided limits are the most stringent so far from high-energy experiments.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    CERN Courier (CH)

    Quantum Diaries
    QuantumDiaries

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire(CH) map

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: