Tagged: 2.3-metre Bok Telescope at the Steward Observatory in Arizona Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:06 pm on March 16, 2018 Permalink | Reply
    Tags: 2.3-metre Bok Telescope at the Steward Observatory in Arizona, , , , , ,   

    From Dunlap: “Opening a Wider Window on the Universe” 

    Dunlap Institute bloc
    Dunlap Institute for Astronomy and Astrophysics

    Jul 06, 2017 [Just got this in RSS]

    Prof. Dae-Sik Moon
    Department of Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6566
    e: moon@astro.utoronto.ca
    w: http://www.astro.utoronto.ca/~moon/

    Prof. Suresh Sivanandam
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6550
    e: sivanandam@dunlap.utoronto.ca
    w: http://www.dunlap.utoronto.ca/dunlap-people/prof-suresh-sivanandam/

    Chris Sasaki
    Communications Coordinator | Press Officer
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6613
    e: csasaki@dunlap.utoronto.ca
    w: dunlap.utoronto.ca

    1
    In May 2017, Prof. Dae-Sik Moon, Prof. Suresh Sivanandam and PhD student Elliot Meyer installing WIFIS on the 2.3-metre Bok Telescope at the Steward Observatory in Arizona. Image: Prof. Suresh Sivanandam; Dunlap Institute.

    An innovative astronomical spectrograph has achieved “first light”, the start of its life as a scientific tool for studying objects such as colliding galaxies, stellar nurseries and the remnants of exploded stars.

    Spectrographs are instruments which spread out light according to wavelength, just as a prism spreads out a beam of sunlight into a “rainbow” of its constituent colours. The spectra created by the spectrograph reveals detailed information about the light source’s composition, motion, age, and more.

    In May, 2017, after years of development, fabrication and testing, a team of astronomers from the University of Toronto installed the Wide Integral-Field Infrared Spectrograph (WIFIS) on the 2.3-metre Bok Telescope at the Steward Observatory in Arizona.

    2.3-metre Bok Telescope at the Steward Observatory at Kitt Peak in Arizona, USA, altitude 2,096 m (6,877 ft)

    U Arizona Steward Observatory at Kitt Peak, AZ, USA, altitude 2,096 m (6,877 ft)

    “WIFIS has the largest field-of-view of any infrared spectrograph of its type,” says WIFIS Principal Investigator, Prof. Dae-Sik Moon, from the Department of Astronomy & Astrophysics, University of Toronto. “This makes WIFIS a unique instrument ideally suited for observing large objects.”

    With the wide viewing field of WIFIS, astronomers can capture, in a single observation, the light of astronomical objects that appear larger in our sky than stars or very distant galaxies; targeting the same objects, spectrographs with narrower fields-of-view would require many more observations.

    “With WIFIS,” says Moon, “we will study supernova explosions by observing young supernova remnants, the motion of gases in star-forming regions, massive stellar clusters, populations of stars within galaxies, merging galaxies, the formation of massive stars in galaxies, and much more.”

    2
    Cassiopeia A is a remnant of a supernova and is typical of the types of objects WIFIS will target. It has already been observed with the new spectrograph. Image: NASA/JPL-Caltech

    Prof. Suresh Sivanandam is a WIFIS co-investigator from the Dunlap Institute for Astronomy & Astrophysics, U of T. “WIFIS is important,” says Sivanandam, “because it helps fulfill the Dunlap’s mandate to deliver innovative, impactful instrumentation.”

    “WIFIS represents the first major infrared instrument that was predominantly developed and constructed at the University of Toronto,” says Sivanadam. “Plus, training students is another part of our mandate, and WIFIS delivered there, too. It offered rich opportunities for students to learn the art of instrumentation development.”

    At the University of Toronto, the WIFIS team also includes Dr. Richard Chou, and U of T astronomy PhD student Elliot Meyer. Previously, the team also included graduate students Max Millar-Blanchaer, Mark Ma, Miranda Jarvis and Bryn Orth-Lashley.

    The international collaboration that developed WIFIS includes the University of Arizona, Korean Astronomy and Space Science Institute and the University of Florida.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute is committed to sharing astronomical discovery with the public. Through lectures, the web, social and new media, an interactive planetarium, and major events like the Toronto Science Festival, we are helping to answer the public’s questions about the Universe.
    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics, Canadian Institute for Theoretical Astrophysics, David Dunlap Observatory, Ontario Science Centre, Royal Astronomical Society of Canada, the Toronto Public Library, and many other partners.

     
  • richardmitnick 7:59 am on January 17, 2018 Permalink | Reply
    Tags: 2.3-metre Bok Telescope at the Steward Observatory in Arizona, , , , , , Steward Observatory,   

    From U Arizona: “Students Help Little Telescope Do Big Things” 

    U Arizona bloc

    University of Arizona

    Jan. 11, 2018
    Daniel Stolte

    A four-year effort involving UA students helped a team of astronomers measure the masses of a large sample of supermassive black holes in the farthest reaches of the universe. As part of a robotic telescope network in southern Arizona, instruments such as the Bok Telescope could play a crucial role in future “grand challenge” science endeavors.

    2.3-metre Bok Telescope at the Steward Observatory at Kitt Peak in Arizona, USA, altitude 2,096 m (6,877 ft)


    U Arizona Steward Observatory at Kitt Peak, AZ, USA, altitude 2,096 m (6,877 ft)

    The Bok Telescope on Kitt Peak is the largest telescope operated solely by the UA’s Steward Observatory. Named in honor of Bart Bok, who was Steward’s director from 1966-1969, the telescope operates every night of the year except Christmas Eve and a maintenance period scheduled during the summer rainy season.

    By today’s standards, the University of Arizona’s Bok Telescope, perched on Kitt Peak southwest of Tucson, is a small telescope: Its primary mirror stands a mere five inches taller than Dušan Ristić, the 7-foot center of the UA men’s basketball team.

    Yet, despite its modest size and advanced age of almost 50 years, the instrument keeps churning out big science, helping us unravel some of the biggest questions about the cosmos. Using observations made with the Bok Telescope, a team of astronomers managed to directly measure the masses of an unprecedented number of the universe’s most distant supermassive black holes, also called quasars. Lurking in the centers of nearly every large galaxy, these Leviathans range from 5 million to 1.7 billion times the mass of the sun.

    “This is the first time that we have directly measured masses for so many supermassive black holes so far away,” said Catherine Grier, a postdoctoral fellow at the Penn State University, who led the research. “These new measurements, and future measurements like them, will provide vital information for people studying how galaxies grow and evolve throughout cosmic time.”

    The results, presented at the American Astronomical Society meeting in National Harbor, Maryland, are published in The Astrophysical Journal and represent a major step forward in our ability to measure supermassive black hole masses in large numbers of distant quasars and galaxies. In addition to the Bok Telescope, the project used the Sloan Digital Sky Survey, or SDSS, and the Canada-France-Hawaii Telescope, or CFHT, atop Hawaii’s Mauna Kea volcano.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft)


    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft)


    CFHT Telescope, Maunakea, Hawaii, USA, at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    3
    An artist’s rendering of the inner regions of a quasar, with a supermassive black hole at the center surrounded by a disk of hot material falling in. The two light curves at the bottom illustrates how astronomers use reverberation to map black holes. (Image: Nahks Tr’Ehnl and Catherine Grier/Penn State, SDSS)

    “The Bok Telescope provided key data that allow measurement of how the quasars vary over time, which tells us about the size of the light-emitting region around the black hole,” said Xiaohui Fan, a Regents’ Professor of Astronomy at the UA’s Steward Observatory and a member of the Sloan Digital Sky Survey. “The data is then used to determine the mass of the black hole.”

    Producing ‘World-Class Results’

    The Bok Telescope’s large field of view, combined with the sensitive detectors, means that astronomers can monitor many quasars at the same time, a feat that is crucial to establish the large sample used in the study.

    “This result shows that the Bok can still produce world-class results,” said Ian McGreer, an assistant astronomer at Steward and one of the study’s authors, who managed the observations with the Bok Telescope. “We got involved because the SDSS did a survey of facilities that could support this program, and the Bok came out as one of the few with the required capabilities.”

    The Bok investment was quite substantial, McGreer explained, with more than 100 nights spread over four years so far.

    “The data in this paper are based on the first year, 2014, when the monitoring was the most intense,” he said. “Sixty nights that year were covered by a rotating cast of observers, many of whom were UA undergrads, grads and visiting students.

    “The Bok does not have a nighttime operator, which means the students received valuable training not only in collecting the data and operating the instrument, but in learning how to operate a telescope at night. This is a fairly rare opportunity these days.”

    As they suck in nearby dust and gas, supermassive black holes heat the material to such high temperatures that it glows brightly enough to be seen all the way across the universe. These bright disks of hot gas are known as quasars, and they are clear indicators of the presence of supermassive black holes. By studying these quasars, we learn not only about supermassive black holes, or SMBHs, but also about the distant galaxies they live in. But to do all of this requires measurements of the properties of the SMBHs, most importantly their masses.

    Measuring the masses of extragalactic SMBHs — in this study, up to 8 billion light-years away — is a daunting task and requires a technique called reverberation mapping. Reverberation mapping works by comparing the brightness of light coming from gas very close in to the black hole (referred to as the “continuum” light) to the brightness of light coming from fast-moving gas farther out. Changes occurring in the continuum region impact the outer region, but light takes time to travel outward, or “reverberate.” By measuring this time delay, astronomers can determine how far out the gas is from the black hole. Knowing that distance allows them to measure the mass of the supermassive black hole — even though they can’t see the details of the black hole itself.

    In this new work, the team used an industrial-scale application of the reverberation mapping technique, with the goal of measuring black hole masses in tens to hundreds of quasars. These new SDSS measurements increase the total number of active galaxies with SMBH mass measurements by about two-thirds, and push the measurements farther back in time to when the universe was only half of its current age.

    Faint Quasars Pose a Challenge

    The key to the success of the SDSS reverberation mapping project lies in the SDSS’ ability to study many quasars at once — the program is currently observing 850 quasars simultaneously. But even with the SDSS’ powerful telescope, this is a challenging task because these distant quasars are incredibly faint.

    “You have to calibrate these measurements very carefully to make sure you really understand what the quasar system is doing,” said Jon Trump, an assistant professor at the University of Connecticut and a member of the research team.

    Observing the quasars over the same season with the Bok Telescope and the CFHT improved these calibrations, allowing the team to find reverberation time delays for 44 quasars and use the time delay measurements to calculate black hole masses that range from about 5 million to 1.7 billion times the mass of our sun.

    In the words of McGreer, the future is bright for this kind of work, with plans to develop a robotic telescope network in southern Arizona using telescopes such as the Bok, which could help guide efforts to combine such a network with “grand challenge” science projects like the Large Synoptic Survey Telescope, or LSST.

    Slated to begin operations in 2023, the LSST will conduct an unprecedented 10-year survey, repeatedly imaging every part of the visible sky every few nights. The heart of the instrument, a 8.4-meter primary mirror, was cast and polished at the UA’s Richard F. Caris Mirror Lab.

    “The lessons learned from this reverberation mapping project serve as a pathfinder, or proof of concept, for something that could be done on a much larger scale when LSST arrives,” McGreer said.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium? An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 12:09 pm on July 7, 2017 Permalink | Reply
    Tags: 2.3-metre Bok Telescope at the Steward Observatory in Arizona, , , , , ,   

    From Dunlap: “Opening a Wider Window on the Universe” 

    Dunlap Institute bloc
    U Toronto Dunlap Institute for Astronomy and Astrophysics

    July 06, 2017

    Prof. Dae-Sik Moon
    Department of Astronomy & Astrophysics
    University of Toronto
    416-978-6566
    moon@astro.utoronto.ca
    http://www.astro.utoronto.ca/~moon/

    Prof. Suresh Sivanandam
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    416-978-6550
    sivanandam@dunlap.utoronto.ca
    http://www.dunlap.utoronto.ca/dunlap-people/prof-suresh-sivanandam/

    Chris Sasaki
    Communications Coordinator | Press Officer
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    416-978-6613
    csasaki@dunlap.utoronto.ca
    dunlap.utoronto.ca

    1
    In May 2017, Prof. Dae-Sik Moon, Prof. Suresh Sivanandam and PhD student Elliot Meyer installing WIFIS on the 2.3-metre Bok Telescope at the Steward Observatory in Arizona. Image: Prof. Suresh Sivanandam; Dunlap Institute

    Bok Telescope U Arizona Steward Observatory, 2.3-metre Bok Telescope at the Steward Observatory in Arizona, USA

    An innovative astronomical spectrograph has achieved “first light”, the start of its life as a scientific tool for studying objects such as colliding galaxies, stellar nurseries and the remnants of exploded stars.

    Spectrographs are instruments which spread out light according to wavelength, just as a prism spreads out a beam of sunlight into a “rainbow” of its constituent colours. The spectra created by the spectrograph reveals detailed information about the light source’s composition, motion, age, and more.

    In May, 2017, after years of development, fabrication and testing, a team of astronomers from the University of Toronto installed the Wide Integral-Field Infrared Spectrograph (WIFIS) on the 2.3-metre Bok Telescope at the Steward Observatory in Arizona.

    “WIFIS has the largest field-of-view of any infrared spectrograph of its type,” says WIFIS Principal Investigator, Prof. Dae-Sik Moon, from the Department of Astronomy & Astrophysics, University of Toronto. “This makes WIFIS a unique instrument ideally suited for observing large objects.”

    2
    Cassiopeia A is a remnant of a supernova and is typical of the types of objects WIFIS will target. It has already been observed with the new spectrograph. Image: NASA/JPL-Caltech

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute is committed to sharing astronomical discovery with the public. Through lectures, the web, social and new media, an interactive planetarium, and major events like the Toronto Science Festival, we are helping to answer the public’s questions about the Universe.
    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics, Canadian Institute for Theoretical Astrophysics, David Dunlap Observatory, Ontario Science Centre, Royal Astronomical Society of Canada, the Toronto Public Library, and many other partners.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: