Recent Updates Page 2 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:46 am on May 13, 2021 Permalink | Reply
    Tags: "ESA's technical heart", , , , , , From European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU)   

    From European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) : “ESA’s technical heart” 

    ESA Space For Europe Banner

    European Space Agency – United Space in Europe (EU)

    From European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU)

    5.12.21

    1
    ESA European Space Research and Technology Centre (ESTEC) (NL)

    An aerial image of ESA’s technical heart, the European Space Research and Technology Centre, ESTEC, making it look as if you could pick it up in your hands.

    Nestled beside coastal dunes in Noordwijk in the Netherlands, ESA European Space Research and Technology Centre (ESTEC) (NL) is ESA’s largest establishment and hub of Europe’s space efforts. Combining the downward view angle with defocused surrounding terrain, known as ‘tilt-shifting’, makes the entire sprawling complex appear miniaturised.

    On the dune side stands the main building, home to ESA laboratories and mission teams, distinguished by an almost 200-m long main corridor. The central white-hued lab building extends forward from it. The small white dome beside it houses ESA’s Large Diameter Centrifuge for high-gravity testing.

    To the left of the main building is the restaurant and tower complex built by renowned Dutch architect Aldo van Eyck. On its right can be seen ESTEC’s Test Centre for full-scale testing of satellites, equipped with a suite of simulation facilities to reproduce every aspect of the space environment.

    In front of the car park to the left is the three-block T-building, home to ESA’s Galileo team, in the centre stands the Erasmus centre for human spaceflight with the headquarters of ESA’s Technology Transfer and Patent Office beside it.

    This photo was taken during a hobby flight by ESA biomedical engineer Arnaud Runge. Credit: SJM Photography.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Please help promote STEM in your local schools.

    Stem Education Coalition

    From European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with NASA to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

    The agency’s facilities are distributed among the following centres:

    ESA European Space Research and Technology Centre (ESTEC) (NL)in Noordwijk, Netherlands;
    ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
    ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
    ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
    European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
    ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
    European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

    Foundation

    After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

    The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization), and the other the precursor of the European Space Agency, ESRO (European Space Research Organisation). The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

    ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

    ESA50 Logo large

    Later activities

    ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years. A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

    As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

    The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency(US), Japan Aerospace Exploration Agency, Indian Space Research Organisation, the Canadian Space Agency(CA) and Roscosmos(RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

    “Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

    Notable ESA programmes include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

    On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

    Mission

    The treaty establishing the European Space Agency reads:

    The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

    ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

    Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

    “Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

    Activities

    According to the ESA website, the activities are:

    Observing the Earth
    Human Spaceflight
    Launchers
    Navigation
    Space Science
    Space Engineering & Technology
    Operations
    Telecommunications & Integrated Applications
    Preparing for the Future
    Space for Climate

    Programmes

    Copernicus Programme
    Cosmic Vision
    ExoMars
    FAST20XX
    Galileo
    Horizon 2000
    Living Planet Programme

    Mandatory

    Every member country must contribute to these programmes:

    Technology Development Element Programme
    Science Core Technology Programme
    General Study Programme
    European Component Initiative

    Optional

    Depending on their individual choices the countries can contribute to the following programmes, listed according to:

    Launchers
    Earth Observation
    Human Spaceflight and Exploration
    Telecommunications
    Navigation
    Space Situational Awareness
    Technology

    ESA_LAB@

    ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

    Technische Universität Darmstadt
    École des hautes études commerciales de Paris (HEC Paris)
    Université de recherche Paris Sciences et Lettres
    University of Central Lancashire

    Membership and contribution to ESA

    By 2015, ESA was an intergovernmental organisation of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programmes (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

    Non-full member states
    Slovenia
    Since 2016, Slovenia has been an associated member of the ESA.

    Latvia
    Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

    Canada
    Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, the Canadian Space Agency takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programmes and activities. Canadian firms can bid for and receive contracts to work on programmes. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).

    Enlargement

    After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programmes, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

    During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

    A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

    Relationship with the European Union

    The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

    History

    At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organisation for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

    Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

    During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

    In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

    Cooperation with other countries and organisations

    ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

    Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

    European Union
    ESA and EU member states
    ESA-only members
    EU-only members

    ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

    There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programmes and to organising their respective roles relating to space.

    The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

    Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

    The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

    National space organisations of member states:

    The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
    The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
    The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
    The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programmes. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
    The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialised in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

    National Aeronautics Space Agency(US)

    ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programmes with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

    In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others. Also, the Hubble Space Telescope is a joint project of NASA and ESA. Future ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna. NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon. Astronaut selection announcements are expected within two years of the 2024 scheduled launch date.

    Cooperation with other space agencies

    Since China has started to invest more money into space activities, the Chinese Space Agency(CN) has sought international partnerships. ESA is, beside the Russian Space Agency, one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

    ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

    Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

     
  • richardmitnick 10:53 pm on May 12, 2021 Permalink | Reply
    Tags: "Excitation spectral microscopy integrates multi-target imaging and quantitative biosensing", ,   

    From University of California- Berkeley (US) and From Chinese Academy of Sciences [中国科学院] (CN) via phys.org : “Excitation spectral microscopy integrates multi-target imaging and quantitative biosensing” 

    From University of California-Berkeley (US)

    and

    From Chinese Academy of Sciences [中国科学院] (CN)

    via

    phys.org

    May 12, 2021

    1
    a, Schematic of the setup. Full-frame spectral micrographs are obtained by the synchronized fast modulation of the excitation wavelength in consecutive frames. P, polarizer; L, lens; F, bandpass filter; DM, dichroic mirror. b, Unmixed images of 6 subcellular targets in a live COS-7 cell with 8 excitation wavelengths. LipidSpot 488: lipid droplets (LDs), SYBR Green: mitochondrial DNA, Mito-PhiYFP: mitochondrial matrix, WGA-CF532: cell membrane, LysoBrite Orange: lysosomes, tdTomato-ER3: ER. c, Reference excitation spectra of the 6 fluorophores, separately measured on the setup using singly labeled samples. d, Mito-pHRed absolute pH maps of the mitochondrial matrix in a live HeLa cell, before (top) and after (bottom) 120 s treatment with 20 μM CCCP. e, Color-coded FRET maps for a macromolecular crowding sensor, for two live COS-7 cells before (left), ~10 s after (center), and ~25 s after (right) 150% hypertonic treatment. f, Unmixed images of color-coded Mito-pHRed absolute pH map, mOrange2-Parkin, PhiYFP-LC3, and LAMP1-Clover for two Parkin-expressing live HeLa cells after the application of 20 μM CCCP for 4 h. g, Zoom-in of the white box in (f) Credit: Kun Chen, Rui Yan, Limin Xiang, and Ke Xu.

    The multiplexing capability of fluorescence microscopy is severely limited by the broad fluorescence spectral width. Spectral imaging offers potential solutions, yet typical approaches to disperse the local emission spectra notably impede the attainable throughput and place substantial constraints on temporal resolution. Tunable bandpass filters provide a possibility to scan through the emission wavelength in the wide field. However, applying narrow bandpasses to the fluorescence emission results in inefficient use of the scarce signal.

    In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Ke Xu from College of Chemistry, University of California, Berkeley(US) have demonstrated that using a single, fixed fluorescence emission detection band, through frame-synchronized fast scanning of the excitation wavelength from a white lamp via an acousto-optic tunable filter (AOTF), up to 6 subcellular targets, labeled by common fluorophores of substantial spectral overlap, can be simultaneously imaged in live cells with low (~1%) crosstalk and high temporal resolution (down to ~10 ms).

    The demonstrated capability to quantify the abundances of different fluorophores in the same sample through unmixing the excitation spectra next enabled them to devise novel, quantitative imaging schemes for both bi-state and FRET (Förster resonance energy transfer) fluorescent biosensors in live cells. They thus achieved full-frame high sensitivities and spatiotemporal resolutions in quantifying the mitochondrial matrix pH and the intracellular macromolecular crowding. They thus unveiled significant spatial heterogeneities in both parameters, including spontaneous sudden jumps in the mitochondrial matrix pH accompanied by dramatic mitochondrial shape changes. They further demonstrated, for the first time, the multiplexing of absolute pH imaging with three additional target organelles/proteins to elucidate the complex, Parkin-mediated mitophagy pathway.

    “The potential extension of our approach to even more fluorophores may be achieved by further increasing the number of excitation wavelengths or integrating emission dispersion. Whereas in this work we focused on a facile system based on a lamp-operated epifluorescence microscope, the fast multi-fluorophore and quantitative biosensor imaging capabilities we demonstrated here should be readily extendable to other systems, including light-sheet fluorescence microscopy and structured illumination microscopy” the scientists commented.

    Together, these results “unveil the exceptional opportunities excitation spectral microscopy provides for highly multiplexed fluorescence imaging. The prospect of acquiring fast spectral images in the wide-field without the need for fluorescence dispersion or the care for the spectral response of the detector offers tremendous potential,” the scientists conclude.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences [中国科学院] (CN) is the linchpin of China’s drive to explore and harness high technology and the natural sciences for the benefit of China and the world. Comprising a comprehensive research and development network, a merit-based learned society and a system of higher education, CAS brings together scientists and engineers from China and around the world to address both theoretical and applied problems using world-class scientific and management approaches.

    Since its founding, CAS has fulfilled multiple roles — as a national team and a locomotive driving national technological innovation, a pioneer in supporting nationwide S&T development, a think tank delivering S&T advice and a community for training young S&T talent.

    Now, as it responds to a nationwide call to put innovation at the heart of China’s development, CAS has further defined its development strategy by emphasizing greater reliance on democratic management, openness and talent in the promotion of innovative research. With the adoption of its Innovation 2020 programme in 2011, the academy has committed to delivering breakthrough science and technology, higher caliber talent and superior scientific advice. As part of the programme, CAS has also requested that each of its institutes define its “strategic niche” — based on an overall analysis of the scientific progress and trends in their own fields both in China and abroad — in order to deploy resources more efficiently and innovate more collectively.

    As it builds on its proud record, CAS aims for a bright future as one of the world’s top S&T research and development organizations.

    The University of California-Berkeley (US) is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California (US) system and a founding member of the Association of American Universities (US). Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at DOE’s Lawrence Berkeley National Laboratory(US), DOE’s Lawrence Livermore National Laboratory(US) and DOE’s Los Alamos National Lab(US), and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, the University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California, Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California, Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now DOE’s Lawrence Berkeley National Laboratory (US)) and invented the cyclotron, which won him the Nobel physics prize in 1939. Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, Los Alamos National Laboratory (1943) and Lawrence Livermore National Laboratory (1952).

    By 1942, the American Council on Education ranked Berkeley second only to Harvard University (US) in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, the Mathematical Sciences Research Institute (MSRI) was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, the Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for the California Institute for Quantitative Biosciences, opened. The next few years saw the dedication of the Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of the Center for Information Technology Research in the Interest of Society; and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, the Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, Univerity of California-San Fransisco (US), established the Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and MIT among US universities; five Turing Awards, behind only Massachusetts Institute of Technology (US) and Stanford; and five Fields Medals, second only to Princeton University (US). According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berkeley Seal

     
  • richardmitnick 9:55 pm on May 12, 2021 Permalink | Reply
    Tags: "Laser Communications- Empowering More Data Than Ever Before", ,   

    From NASA Goddard Space Flight Center: “Laser Communications- Empowering More Data Than Ever Before” 

    NASA Goddard Banner

    From NASA Goddard Space Flight Center

    May 12, 2021

    Katherine Schauer
    katherine.s.schauer@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    Illustration of the U.S. Department of Defense’s Space Test Program Satellite-6 (STPSat-6) with the Laser Communications Relay Demonstration (LCRD) payload communicating data over infrared links. Credit: NASA.

    Launching this summer, NASA’s Laser Communications Relay Demonstration (LCRD) will showcase the dynamic powers of laser communications technologies. With NASA’s ever-increasing human and robotic presence in space, missions can benefit from a new way of “talking” with Earth.

    Since the beginning of spaceflight in the 1950s, NASA missions have leveraged radio frequency communications to send data to and from space. Laser communications, also known as optical communications, will further empower missions with unprecedented data capabilities.

    1
    Graphic representation of the difference in data rates between radio and laser communications. Credit: NASA.

    Why Lasers?

    As science instruments evolve to capture high-definition data like 4K video, missions will need expedited ways to transmit information to Earth. With laser communications, NASA can significantly accelerate the data transfer process and empower more discoveries.

    Laser communications will enable 10 to 100 times more data transmitted back to Earth than current radio frequency systems. It would take roughly nine weeks to transmit a complete map of Mars back to Earth with current radio frequency systems. With lasers, it would take about nine days.

    Additionally, laser communications systems are ideal for missions because they need less volume, weight, and power. Less mass means more room for science instruments, and less power means less of a drain of spacecraft power systems. These are all critically important considerations for NASA when designing and developing mission concepts.

    “LCRD will demonstrate all of the advantages of using laser systems and allow us to learn how to use them best operationally,” said Principal Investigator David Israel at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “With this capability further proven, we can start to implement laser communications on more missions, making it a standardized way to send and receive data.”

    How it Works

    Both radio waves and infrared light are electromagnetic radiation with wavelengths at different points on the electromagnetic spectrum. Like radio waves, infrared light is invisible to the human eye, but we encounter it every day with things like television remotes and heat lamps.

    Missions modulate their data onto the electromagnetic signals to traverse the distances between spacecraft and ground stations on Earth. As the communication travels, the waves spread out.

    The infrared light used for laser communications differs from radio waves because the infrared light packs the data into significantly tighter waves, meaning ground stations can receive more data at once. While laser communications aren’t necessarily faster, more data can be transmitted in one downlink.

    Laser communications terminals in space use narrower beam widths than radio frequency systems, providing smaller “footprints” that can minimize interference or improve security by drastically reducing the geographic area where someone could intercept a communications link. However, a laser communications telescope pointing to a ground station must be exact when broadcasting from thousands or millions of miles away. A deviation of even a fraction of a degree can result in the laser missing its target entirely. Like a quarterback throwing a football to a receiver, the quarterback needs to know where to send the football, i.e. the signal, so that the receiver can catch the ball in stride. NASA’s laser communications engineers have intricately designed laser missions to ensure this connection can happen.

    Laser Communications Relay Demonstration

    Located in geosynchronous orbit, about 22,000 miles above Earth, LCRD will be able to support missions in the near-Earth region. LCRD will spend its first two years testing laser communications capabilities with numerous experiments to refine laser technologies further, increasing our knowledge about potential future applications.

    LCRD’s initial experiment phase will leverage the mission’s ground stations in California and Hawaii, Optical Ground Station 1 and 2, as simulated users. This will allow NASA to evaluate atmospheric disturbances on lasers and practice switching support from one user to the next. After the experiment phase, LCRD will transition to supporting space missions, sending and receiving data to and from satellites over infrared lasers to demonstrate the benefits of a laser communications relay system.

    The first in-space user of LCRD will be NASA’s Integrated LCRD Low-Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T), which is set to launch to the International Space Station in 2022. The terminal will receive high-quality science data from experiments and instruments onboard the space station and then transfer this data to LCRD at 1.2 gigabits per second. LCRD will then transmit it to ground stations at the same rate.

    LCRD and ILLUMA-T follow the groundbreaking 2013 Lunar Laser Communications Demonstration, which downlinked data over a laser signal at 622 megabits-per-second, proving the capabilities of laser systems at the Moon. NASA has many other laser communications missions currently in different stages of development. Each of these missions will increase our knowledge about the benefits and challenges of laser communications and further standardize the technology.

    LCRD is slated to launch as a payload on a Department of Defense spacecraft on June 23, 2021.

    LCRD is a NASA payload aboard the Department of Defense’s Space Test Program Satellite-6 (STPSat-6). STPSat-6, part of the third Space Test Program (STP-3) mission, will launch on a United Launch Alliance Atlas V 551 rocket from the Cape Canaveral Space Force Station in Florida. STP is operated by the United States Space Force’s Space and Missile Systems Center.

    LCRD is led by Goddard and in partnership with NASA’s Jet Propulsion Laboratory in Southern California and the MIT (US) Lincoln Laboratory. LCRD is funded through NASA’s Technology Demonstration Missions program, part of the Space Technology Mission Directorate, and the Space Communications and Navigation (SCaN) program, within the Human Exploration and Operations Mission Directorate.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition


    NASA/Goddard Campus

    NASA’s Goddard Space Flight Center, Greenbelt, MD (US) is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    GSFC also operates two spaceflight tracking and data acquisition networks (the NASA Deep Space Network(US) and the Near Earth Network); develops and maintains advanced space and Earth science data information systems, and develops satellite systems for the National Oceanic and Atmospheric Administration(US) .

    GSFC manages operations for many NASA and international missions including the NASA/ESA Hubble Space Telescope; the Explorers Program; the Discovery Program; the Earth Observing System; INTEGRAL; MAVEN; OSIRIS-REx; the Solar and Heliospheric Observatory ; the Solar Dynamics Observatory; Tracking and Data Relay Satellite System ; Fermi; and Swift. Past missions managed by GSFC include the Rossi X-ray Timing Explorer (RXTE), Compton Gamma Ray Observatory, SMM, COBE, IUE, and ROSAT. Typically, unmanned Earth observation missions and observatories in Earth orbit are managed by GSFC, while unmanned planetary missions are managed by the Jet Propulsion Laboratory (JPL) in Pasadena, California(US).

    Goddard is one of four centers built by NASA since its founding on July 29, 1958. It is NASA’s first, and oldest, space center. Its original charter was to perform five major functions on behalf of NASA: technology development and fabrication; planning; scientific research; technical operations; and project management. The center is organized into several directorates, each charged with one of these key functions.

    Until May 1, 1959, NASA’s presence in Greenbelt, MD was known as the Beltsville Space Center. It was then renamed the Goddard Space Flight Center (GSFC), after Robert H. Goddard. Its first 157 employees transferred from the United States Navy’s Project Vanguard missile program, but continued their work at the Naval Research Laboratory in Washington, D.C., while the center was under construction.

    Goddard Space Flight Center contributed to Project Mercury, America’s first manned space flight program. The Center assumed a lead role for the project in its early days and managed the first 250 employees involved in the effort, who were stationed at Langley Research Center in Hampton, Virginia. However, the size and scope of Project Mercury soon prompted NASA to build a new Manned Spacecraft Center, now the Johnson Space Center, in Houston, Texas. Project Mercury’s personnel and activities were transferred there in 1961.

    The Goddard network tracked many early manned and unmanned spacecraft.

    Goddard Space Flight Center remained involved in the manned space flight program, providing computer support and radar tracking of flights through a worldwide network of ground stations called the Spacecraft Tracking and Data Acquisition Network (STDN). However, the Center focused primarily on designing unmanned satellites and spacecraft for scientific research missions. Goddard pioneered several fields of spacecraft development, including modular spacecraft design, which reduced costs and made it possible to repair satellites in orbit. Goddard’s Solar Max satellite, launched in 1980, was repaired by astronauts on the Space Shuttle Challenger in 1984. The Hubble Space Telescope, launched in 1990, remains in service and continues to grow in capability thanks to its modular design and multiple servicing missions by the Space Shuttle.

    Today, the center remains involved in each of NASA’s key programs. Goddard has developed more instruments for planetary exploration than any other organization, among them scientific instruments sent to every planet in the Solar System. The center’s contribution to the Earth Science Enterprise includes several spacecraft in the Earth Observing System fleet as well as EOSDIS, a science data collection, processing, and distribution system. For the manned space flight program, Goddard develops tools for use by astronauts during extra-vehicular activity, and operates the Lunar Reconnaissance Orbiter, a spacecraft designed to study the Moon in preparation for future manned exploration.

     
  • richardmitnick 9:17 pm on May 12, 2021 Permalink | Reply
    Tags: "How exoplanets could aid the search for dark matter", , , , , , ,   

    From DOE’s SLAC National Accelerator Laboratory (US): “How exoplanets could aid the search for dark matter” 

    From DOE’s SLAC National Accelerator Laboratory (US)

    May 12, 2021
    Nathan Collins

    Rebecca Leane and colleagues showed dark matter could heat planets in our galaxy to incredible temperatures. Here, she explains how that works and how it could pave the way for sensitive new searches for the mysterious substance.

    1
    Courtesy Rebecca Leane

    The hunt for Dark Matter is a tough one. Although it makes up around 85% of the matter in the universe, observations to date point to it being made up of elementary particles that likely interact only very weakly with ordinary matter. The only way we know that dark matter exists, in fact, is through puzzling observations that reveal dark matter’s gravitational influence on the way matter clumps together, on the way galaxies spin and so forth.

    So far, physicists have focused mainly on two broad ways to learn more: In ground-based experiments, they can try to capture the rare occasions on which dark matter interacts with ordinary matter, or, drawing on detailed observations of the sky, they can place limits on what kind of particles dark matter comprises. A third, somewhat more unusual approach is to search the heavens for signs that dark matter particles might be annihilating each other, creating gamma rays or other ordinary matter particles that then make their way to Earth.

    And then there is Rebecca Leane, a physicist at the Department of Energy’s SLAC National Accelerator Laboratory. Leane, a postdoctoral fellow who will soon join SLAC’s fundamental physics group as a staff scientist, and Ohio State University (US) physicist Juri Smirnov proposed in Physical Review Letters that exoplanets – planets outside our solar system – could aid the search. According to their calculations, certain kinds of dark matter could drastically increase the temperatures of exoplanets near the center of our galaxy.

    Here, Leane talks about how dark matter could heat up exoplanets and how experiments already in the works could provide some of the best evidence to date on the existence and nature of dark matter.

    What happens when exoplanets interact with dark matter?

    We know we have exoplanets that are scattered throughout the galaxy, and we think there is a dark matter halo that extends throughout our galaxy.

    As exoplanets pass through the dark matter halo, the dark matter can scatter off them. If the dark matter particles scatter, they can lose energy and become gravitationally captured by the exoplanets.

    Over time, more and more dark matter particles can become captured, and once you start getting a lot of dark matter particles inside the exoplanet, they can start annihilating each other, if it’s the type of dark matter that annihilates. Then the energy from this annihilation can be absorbed by the planet, and if the energy is absorbed, the temperature increases.

    Where did the idea to look for exoplanet heating come from?

    Particularly recently, people had been speaking about how dark matter could heat up something called neutron stars, which are effectively just very dense balls predominantly made up of neutrons.

    It had been already pointed out that if you found a sufficiently close-by neutron star, you could use upcoming infrared telescopes, particularly the James Webb Space Telescope, to measure its temperature.

    So, people had already considered looking for dark matter heating in one object with this telescope.

    What we realized was that an exoplanet can be a thousand times bigger than a neutron star, and because they’re so big, you can see them from much farther away. And because you have lots of exoplanets between here and the center of the galaxy, we can potentially trace out the dark matter density in the galaxy.

    The giveaway would be you just see way too many planets that are way too hot, and their temperatures are correlated with dark matter density – they’re hotter in the center of the galaxy where there’s more dark matter, and their temperatures drop off farther out.

    What’s “way too hot”?

    It depends on the type of planet, but we could get temperatures in the ballpark of 1,000 kelvins [roughly 700°C or 1,300°F], compared to a prediction of only 200 kelvins [-73°C or -100°F] or so for planets without dark matter.

    Do the details of a planet’s geophysics matter?

    It does matter. For example, if you think about rocky planets like the Earth or Venus or Mars, they’re not ideal because they’re generally pretty small. Instead, the bigger the planet, the better a target it is. Bigger planets generally have more dark matter passing through them, so generally they get hotter, but you also want planets that are not naturally too hot themselves. For example, we think dark matter could be captured in the sun, but the sun’s already just so hot you’d never see any dark matter heat.

    The optimal sorts of candidates are jupiters or brown dwarfs. Jupiters are planets just like our Jupiter, and these are supposed to be pretty common. This also extends to super jupiters, which are like Jupiter but 10 times bigger. Brown dwarfs can be quite heavy, and if they’re quite old, they’re usually the size of Jupiter, which means they’re very dense, so they’re very good at capturing dark matter particles.

    What are the prospects for actually conducting this kind of search?

    The great thing is we can piggyback off other searches. Part of the James Webb Space Telescope mission is to measure the temperature of exoplanets, so this is already something people are going to do. And then there are lots of searches where people want to look at the center of the galaxy for other sorts of reasons.

    Another great thing about the search we’re proposing is that there’s supposed to be a lot of exoplanets out there, something like 300 billion in the galaxy. This means that there is just so much discovery potential for this search. We’re not going to find all of these exoplanets right away, and you have to find the right ones, but the Roman Telescope is expected to find at least a few hundred of the type of candidates that we want in the next few years. So that seems very promising.


    _____________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu.


    _____________________________________________________________________________________

    The research was funded in part by the DOE Office of Science, the NASA Fermi Guest Investigator Program, and the Alexander von Humboldt Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC National Accelerator Laboratory (US) originally named Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector.

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.


    KIPAC

    The Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) is partially housed on the grounds of SLAC, in addition to its presence on the main Stanford campus.

    [/caption]

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory(US) FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    DOE’s SLAC National Accelerator Laboratory(US) LCLS-II Undulators The Linac Coherent Light Source’s new undulators each use an intricately tuned series of magnets to convert electron energy into intense bursts of X-rays. The “soft” X-ray undulator stretches for 100 meters on the left side of this hall, with the “hard” x-ray undulator on the right. Credit: Alberto Gamazo/SLAC National Accelerator Laboratory(US).

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 6:15 pm on May 12, 2021 Permalink | Reply
    Tags: "The Bands of Radio Astronomy- How Astronomers See the Colors of Radio Light", , , , , The Karl G. Jansky Very Large Array (VLA)   

    From National Radio Astronomy Observatory : “The Bands of Radio Astronomy- How Astronomers See the Colors of Radio Light” 

    From National Radio Astronomy Observatory

    NRAO Banner

    May 10, 2021

    Radio light has a spectrum of colors. Astronomers see them through what are known as radio bands.

    1
    One of 28 units of the NRAO VLA

    Astronomical images are often filled with beautiful and subtle colors. While some images are fairly accurate to the colors we see with our eyes, most are false-color images designed to make certain features more apparent. This is always the case with light our eyes can’t see, such as radio. While we could talk about the colors of radio light, we don’t. For practical and historical reasons, we often talk about radio in terms of bands.

    2
    In this radio image of the Pinwheel galaxy (M33), different frequencies of radio light are assigned different colors. Credit: NRAO/Associated Universities Inc (US)/National Science Foundation (US).

    The color of light is defined by the frequency or wavelength

    of its waves. For visible light, red has a lower frequency (and longer wavelength), while blue has a higher frequency (and shorter wavelength). So, we could say that each frequency has a unique color. If we extend this to other types of light such as radio or X-ray, then all light has color.

    Of course, our eyes can’t see radio or X-ray light. We can’t even see every color of visible light. Instead, our retinas have three types of color-sensitive cells called cones. Each type of cone is sensitive to a narrow range of colors, either reddish, greenish, or bluish. Our brain then interprets the light of these cones as a full-color image.

    In astronomy, we could say that each type of cone captures a band of optical frequencies. Thus, our eyes have red-band, green-band, and blue-band sensors. The color bands of optical astronomy don’t quite match those of our eyes, since they depend on the sensitivity of optical cameras. The most common optical bands are R (red), V (visible), and B (blue), but astronomers also use I (infrared) and U (ultraviolet).

    Because radio wavelengths are so much longer than visible ones, the color bands we use for radio are often defined differently. Rather than defining them in terms of the sensitivity of a detector, they are defined in terms of the size of the waveguide used to detect them. A waveguide is basically a hollow tube or channel that can carry a radio wave to the detector. The size of the waveguide depends on the wavelength of the radio light, where longer wavelengths require larger waveguides.

    These waveguide bands date back to the development of radar in World War II, so their names have no real rhyme or reason. That was by design so that if a radar operator happened to mention X-band, K-band, or Q-band, the enemy would have a hard time figuring out the radar’s frequency. Over time other bands were added as well.

    Waveguide bands are still often used. The Karl G. Jansky Very Large Array (VLA) uses waveguide bands, and is so sensitive that it uses three slightly different frequencies in the K-band.

    2
    Waveguides and phase shifters of different sizes. Credit: NRAO/AUI/NSF.

    But other radio observatories define their own bands based on the sensitivity of their telescopes. For example, the Atacama Large Millimeter/submillimeter Array (ALMA) can observe wavelengths from 8.6 mm to 0.32 mm and divides this range into 10 bands.

    Although we call them bands, that doesn’t mean that a radio telescope can capture all the light equally within a particular band. For any detector, there is a particular frequency where it is most sensitive. For wavelengths that differ slightly from that optimal frequency, the detector is less sensitive. The same is true for the way our eyes see color. The red cones in our retinas are most sensitive to red, but they can detect a little bit of green light. The same is true for the other cones in our eyes.

    Seeing colors allows us to distinguish certain features around us, such as seeing a bright red apple among the green leaves of the apple tree. The same is true for radio astronomy. By using different frequency bands, astronomers can distinguish the cold microwave glow of dust and gas from the hot radio glow of electrons swirling in a magnetic field. Many of the different colors of radio light are produced by different processes. By observing these colors radio astronomers can understand how everything, from stars to black holes, behaves.

    But that’s a story for another time.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 3:49 pm on May 12, 2021 Permalink | Reply
    Tags: "Outflows from Super Star Clusters in NGC253", , , , ,   

    From National Radio Astronomy Observatory : “Outflows from Super Star Clusters in NGC253” 

    NRAO Banner

    From National Radio Astronomy Observatory

    12 May 2021
    Rebecca Levy and Alberto Bolatto (University of Maryland)

    1
    [Left] Composite near-infrared JHK image of NGC253 from 2MASS. [Center] Zoom in to the central, highly obscured starburst region. Composite of three HST filters from the GHOSTS and ANGST surveys. [Right] Zoom in to the central 170 pc seen in dust continuum emission with ALMA, showing the individual, resolved, deeply embedded SSCs. Insets show CS(7-6) spectral line profiles also from ALMA towards three SSCs, revealing the P-Cygni outflow signatures that are direct signs of feedback from these young, massive star clusters. Credit: A. Bolatto.

    NGC253 is a nearby galaxy, whose central regions are undergoing a vigorous period of fast star formation called a starburst. At high levels of star formation, a larger fraction of stars form in clustered environments. The most extreme star forming environments can lead to massive and compact so-called “super” star clusters (SSCs), which can contain more than 100,000 solar masses in stars in a parsec-sized region. Because they are often deeply embedded and compact in size, observations of young SSCs in the process of forming are rare. A radio array, such as ALMA or the ngVLA, is required both to peer behind the walls of obscuring dust to reveal the forming clusters and to spatially resolve them.

    Our team ( The Astrophysical Journal, Levy et al. 2021) used observations from ALMA with very high 28 mas (0.5 pc) resolution, which is equivalent to seeing the width of a single grain of rice on the ground while flying in a commercial airplane.

    With these data, our team resolved more than a dozen deeply embedded SSCs in the center of NGC253 that were previously identified by ALMA as massive and very gas-rich SSCs in formation (e.g.,[The Astrophysical Journal], Ando et al. 2017; [The Astrophysical Journal]Leroy et al. 2018). Intriguingly, spectral lines that trace dense molecular gas show deep blueshifted absorption and redshifted emission profiles towards three of the SSCs. This line profile shape­–called a P-Cygni profile–is a direct signature of outflowing material from the SSCs.

    We model the line profiles and find that the outflows from the SSCs must be nearly spherical. By comparing the SSC sizes and masses in concert with the outflow velocities and momenta to simulations of feedback processes, we conclude that the outflows in these SSCs are most likely powered by a combination of stellar winds and dust-reprocessed radiation pressure. The outflowing mass we measure is a significant fraction of the gas mass in the clusters, suggesting the SSCs are undergoing a fast phase that clears out their parent gas cloud and may lead to the termination of star formation and cluster growth.

    Soon, our approved Cycle 1 JWST observations will measure the radiation fields, ages, and feedback of these SSCs across the near- and mid-infrared in unprecedented detail.

    In the future, the ngVLA will revolutionize our ability to study SSC formation in galaxies.

    Even with ALMA, studies such as this one are limited to the most nearby sources where the SSCs can be spatially resolved. The ngVLA long baselines and excellent sensitivity mean that SSCs will be resolvable out to the Virgo cluster and beyond. Together, the unprecedented resolution, sensitivity, and wavelength coverage of ALMA, JWST, and the ngVLA will vastly expand the sample available for studies of SSC formation and feedback such as this one and enable studies as a function of environment and other galaxy properties.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    National Radio Astronomy Observatory(US) Karl G Jansky Very Large Array, located in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, ~50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes.

    National Radio Astronomy Observatory(US) ngVLA, located near the location of the VLA site on the plains of San Agustin, fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m) with additional mid-baseline stations currently spread over greater New Mexico, Arizona, Texas, and Mexico

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 9:31 am on May 12, 2021 Permalink | Reply
    Tags: "Low temperature physics gives insight into turbulence", , , , University of Lancaster (UK)   

    From University of Lancaster (UK) : “Low temperature physics gives insight into turbulence” 

    lancaster-u-uk-bloc

    11 May 2021

    1
    Much of the energy used in sea transport goes into the creation of turbulence.

    A novel technique for studying vortices in quantum fluids has been developed by Lancaster physicists.

    Andrew Guthrie, Sergey Kafanov, Theo Noble, Yuri Pashkin, George Pickett and Viktor Tsepelin, in collaboration with scientists from Moscow State University [ Московский государственный университет имени М. В. Ломоносова Moskovskiy gosudarstvenn’y universitet imeni M. V. Lomonosova] (RU), used tiny mechanical resonators to detect individual quantum vortices in superfluid helium.

    Their work is published in the current volume of Nature Communications.

    This research into quantum turbulence is simpler than turbulence in the real world, which is observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or chimney smoke. Despite the fact it is so commonplace and is found at every level, from the galaxies to the subatomic, it is still not fully understood.

    Physicists know the fundamental Navier-Stokes Equations which govern the flow of fluids such as air and water, but despite centuries of trying, the mathematical equations still cannot be solved.

    Quantum turbulence may provide the clues to an answer.

    Turbulence in quantum fluids is much simpler than its “messy” classical counterpart, and being made up of identical singly-quantised vortices, can be thought of as providing an “atomic theory” of the phenomenon.

    Unhelpfully, turbulence in quantum systems, for example in superfluid helium 4, takes place on microscopic scales, and so far scientists have not had tools with sufficient precision to probe eddies this small.

    But now the Lancaster team, working at temperature of a few thousandths of a degree above absolute zero, has harnessed nanoscience to allow the detection of single quantum vortices (with core sizes on a par with atomic diameters) by using a nanoscale “guitar string “in the superfluid.

    How the team does it is to trap a single vortex along the length of the “string” (a bar of around 100 nanometres across). The resonant frequency of the bar changes when a vortex is trapped, and thus the capture and release rate of vortices can be followed, opening a window into the turbulent structure.

    Dr Sergey Kafanov who initiated this research said: “The devices developed have many other uses, one of which is to ping the end of a partially trapped vortex to study the nanoscale oscillations of the vortex core. Hopefully the studies will add to our insight into turbulence and may provide clues on how to solve these stubborn equations.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    lancaster-u-uk-campus

    University of Lancaster (UK) is a collegiate public research university in Lancaster, Lancashire, England. The university was established by Royal Charter in 1964, one of several new universities created in the 1960s.

    The university was initially based in St Leonard’s Gate in the city centre, before moving in 1968 to a purpose-built 300 acres (120 ha) campus at Bailrigg, 4 km (2.5 mi) to the south. The campus buildings are arranged around a central walkway known as the Spine, which is connected to a central plaza, named Alexandra Square in honour of its first chancellor, Princess Alexandra.

    Lancaster is one of only six collegiate universities in the UK; the colleges are weakly autonomous. The eight undergraduate colleges are named after places in the historic county of Lancashire, and each have their own campus residence blocks, common rooms, administration staff and bar.

    Lancaster is ranked in the top ten in all three national league tables, and received a Gold rating in the Government’s inaugural (2017) Teaching Excellence Framework. The annual income of the institution for 2018/19 was £317.9 million of which £42.0 million was from research grants and contracts, with an expenditure of £352.7 million. Along with Durham University (UK), University of Leeds (UK), University of Liverpool (UK), University of Manchester (UK), University of Newcastle upon Tyne (UK), University of Sheffield (UK) and University of York (UK), Lancaster is a member of the N8 Research Partnership (UK). Elizabeth II, Duke of Lancaster, is the visitor of the University.

    Research

    Lancaster’s research income for 2015-16 was £38.3 million. In the 2014 Research Excellence Framework assessment, Lancaster was ranked 18th out of 128 UK universities, including 13th for the percentage of world-leading research. The University places a particular focus on interdisciplinary research, encouraging collaborative research across academic departments.

    In 2012, Lancaster University announced a partnership with the UK’s biggest arms company, (BAE Systems), and four other North-Western universities (Liverpool, University of Salford (UK), University of Central Lancaster (UK) and Manchester) in order to work on the Gamma Programme which aims to develop “autonomous systems”. According to the University of Liverpool when referring to the programme, “autonomous systems are technology based solutions that replace humans in tasks that are mundane, dangerous and dirty, or detailed and precise, across sectors, including aerospace, nuclear, automotive and petrochemicals”.

     
  • richardmitnick 8:36 am on May 12, 2021 Permalink | Reply
    Tags: "Electromagnetic levitation whips nanomaterials into shape", , Chemical and Environmental Engineering, , , ,   

    From UC Riverside (US) : “Electromagnetic levitation whips nanomaterials into shape” 

    UC Riverside bloc

    From UC Riverside (US)

    May 10, 2021
    Holly Ober
    Senior Public Information Officer
    (951) 827-5893
    holly.ober@ucr.edu

    1
    Image showing the stringlike particles formed by iron and nickel and the more globular clusters formed by copper. Credit: Abbaschian, Zachariah, et. al. 2021.

    In order for metal nanomaterials to deliver on their promise to energy and electronics, they need to shape up — literally.

    To deliver reliable mechanical and electric properties, nanomaterials must have consistent, predictable shapes and surfaces, as well as scalable production techniques. UC Riverside engineers are solving this problem by vaporizing metals within a magnetic field to direct the reassembly of metal atoms into predictable shapes. The research is published in The Journal of Physical Chemistry Letters.

    Nanomaterials, which are made of particles measuring 1-100 nanometers, are typically created within a liquid matrix, which is expensive for bulk production applications, and in many cases cannot make pure metals, such as aluminum or magnesium. More economical production techniques typically involve vapor phase approaches to create a cloud of particles condensing from the vapor. These suffer from a lack of control.

    Reza Abbaschian, a distinguished professor of mechanical engineering; and Michael Zachariah, a distinguished professor of chemical and environmental engineering at UC Riverside’s Marlan and Rosemary Bourns College of Engineering; joined forces to create nanomaterials from iron, copper, and nickel in a gas phase. They placed solid metal within a powerful electromagnetic levitation coil to heat the metal beyond its melting point, vaporizing it. The metal droplets levitated in the gas within the coil and moved in directions determined by their inherent reactions to magnetic forces. When the droplets bonded, they did so in an orderly fashion that the researchers learned they could predict based on the type of metal and how and where they applied the magnetic fields.

    Iron and nickel nanoparticles formed string-like aggregates while copper nanoparticles formed globular clusters. When deposited on a carbon film, iron and nickel aggregates gave the film a porous surface, while carbon aggregates gave it a more compact, solid surface. The qualities of the materials on the carbon film mirrored at larger scale the properties of each type of nanoparticle.

    Because the field can be thought of as an “add-on,” this approach could be applied to any vapor-phase nanoparticle generation source where the structure is important, such as fillers used in polymer composites for magnetic shielding, or to improve electrical or mechanical properties.

    “This ‘field directed’ approach enables one to manipulate the assembly process and change the architecture of the resulting particles from high fractal dimension objects to lower dimension string-like structures. The field strength can be used to manipulate the extent of this arrangement,” Zachariah said.

    Abbaschian and Zachariah were joined in the research by Pankaj Ghildiyal, Prithwish Biswas, Steven Herrera, George W. Mulholland, and Yong Yang.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Riverside Campus

    The University of California, Riverside (US) is a public land-grant research university in Riverside, California. It is one of the 10 campuses of the University of California (US) system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to UC Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    UC Riverside’s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared UC Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the UC Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    UC Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of UC Riverside’s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked UC Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks UC Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all UC Riverside students graduate within six years without regard to economic disparity. UC Riverside’s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, UCR became the first public university campus in the nation to offer a gender-neutral housing option.UC Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The UC Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the UC Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many UC Berkeley(US) alumni, lobbied aggressively for a UC-administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at University of California at Los Angeles(US), became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    UC Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California(US) system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. UC Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. UC Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at Riverside to keep the campus open.

    In the 1990s, the UC Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted UC Riverside for an annual growth rate of 6.3%, the fastest in the UC system, and anticipated 19,900 students at UC Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of the UC Riverside student body, the highest proportion of any UC campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at UC Riverside.

    With UC Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move UC Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at UC Riverside, with the UC Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, UC Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved UC Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of the University of California(US) system, UC Riverside is governed by a Board of Regents and administered by a president. The current president is Michael V. Drake, and the current chancellor of the university is Kim A. Wilcox. UC Riverside’s academic policies are set by its Academic Senate, a legislative body composed of all UC Riverside faculty members.

    UC Riverside is organized into three academic colleges, two professional schools, and two graduate schools. UC Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at UC Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. UC Riverside’s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and the UCR School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. UC Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with Berkeley and Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, UC Riverside offers the Thomas Haider medical degree program in collaboration with UCLA.[29] UC Riverside’s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and UC Riverside’s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the UC system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    UC Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at UC Riverside have an economic impact of nearly $1 billion in California. UC Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at UC Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout UC Riverside’s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, UC Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, UC Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. UC Riverside can also boast the birthplace of two name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction..

     
  • richardmitnick 8:14 am on May 12, 2021 Permalink | Reply
    Tags: "Opinion- Why we should use electric rather than hydrogen cars", , ,   

    From University of New South Wales (AU) : “Opinion- Why we should use electric rather than hydrogen cars” 

    U NSW bloc

    From University of New South Wales (AU)

    12 May 2021

    Graciela Metternicht
    Gail Broadbent

    Hydrogen cars are no economic panacea compared to plug-in electric vehicles.

    1
    There are many good reasons the future of cars should be electric. Photo: Shutterstock.

    Last night’s Federal Budget did not have any promising signals for encouraging uptake of electric vehicles, or to increase spending on installing the essential infrastructure needed to allay fears that motorists won’t be able to recharge on long trips away from home.

    The Federal government did allocate $5 million to creating an advanced manufacturing facility in South Australia to assemble electric vehicles, but this is a small allocation compared to the $200 million plus allocated to increase diesel fuel storage capacity.

    The Budget also does not appear to have allocated any funds to installing hydrogen fuel infrastructure either, but this may be a blessing.

    In last September’s Technology Roadmap, the government talked about the development of clean hydrogen, with its reliance on carbon capture and storage, rather than ‘green’ hydrogen produced from 100 per cent renewable electricity.

    A lot of countries are talking about developing hydrogen as some sort of economic saviour, Argentina and Chile among them, but at least their focus is green hydrogen.

    Hydrogen cars ‘no economic panacea’

    One use for hydrogen is to fuel a type of electric car, often termed fuel cell electric vehicles – but let’s just call them hydrogen cars.

    While there are no tail pipe emissions, transitioning to hydrogen cars may not be the economic panacea that might be hoped for in comparison to plug-in electric vehicles.

    Globally most hydrogen is made by steam reforming of methane or natural gas, where the chief by-product is carbon dioxide and other greenhouse gases; the next most common method to obtain hydrogen is coal gasification, and globally only about four per cent is formed from water by electrolysis due to its expense.

    While hydrogen can be produced by electrolysis, there is no guarantee that the electricity is 100 per cent renewable energy.

    However, the biggest factor that impacts on the economics to use hydrogen cars is that to propel the car forward they use at least twice as much electricity per kilometre than plug-in electric vehicles and are relatively inefficient.

    And given that Australia does not have 100 per cent renewable energy, and quite large proportions of coal used to produce electricity, even if the hydrogen was produced by electrolysis of water, it isn’t going to be clean fuel.

    And given the inefficiency of the cars, using exclusively renewable energy to make the hydrogen isn’t the best use of that electricity.

    You would need to double the electricity generation to go the same distance.

    The additional expense of green hydrogen

    So, if all our passenger cars were electric it would be about 23 per cent of our electricity demand but if they were all hydrogen it would be double that.

    That’s a lot of additional expense to install enough renewable generation to produce the green hydrogen.

    Not only are the cars inefficient but hydrogen refilling stations almost non-existent in Australia, and the cost of installing the infrastructure is enormous.

    Transportation of hydrogen is difficult, although CSIRO is working on that problem and by all accounts the hydrogen has leakage problems during delivery.

    Conveniently, electric vehicles can be trickle charged from any household power point – no need to drive to a refuelling station to fill up.

    And this may give you another clue why oil companies such as Shell are promoting hydrogen vehicles as one form of cleaner transport.

    Fast chargers are cheaper than hydrogen filling stations

    But the cost to install enough hydrogen filling stations to satisfy the market would be higher than installing fast chargers at petrol stations.

    In Australia there are very few models of hydrogen cars available, and none for private sale, and are very expensive even compared to electric cars.

    With the inconvenience of limited refuelling opportunities perhaps hydrogen vehicles will become a niche product for specific tasks.

    However, consumer rationale when buying cars is complex.

    Not only are Californians abandoning hydrogen cars – currently they are the world’s market leaders, but some early buyers of electric vehicles are returning to fossil fuel cars as well.

    Research has shown that it is often due to electric vehicle recharging inconvenience, especially for those with limited range vehicles and no opportunity to recharge at or close to home.

    Hence the need to invest in public recharger networks around the country, not only for long distance trips but for people without off-street parking.

    The future is electric

    But at the moment nearly all of the big brand car manufacturers are going electric, even Toyota who have invested in research and development for hydrogen cars will be offering electric vehicles.

    VW, with its near-death experience following “dieselgate” learned from its mistakes, realised that the future is electric and is investing heavily.

    China has pursued the electric dream so aggressively it has hundreds of electric vehicle production companies and is at risk of a bubble bursting, so the government is considering taking measures to rein in the action.

    Another aspect to consider is fuel security.

    Geopolitical instability in our region is always a risk – and even innocent mistakes can affect countries reliant on imported oil.

    Australia imports some 90 per cent of its fuel needs spending about $30 billion in 2019-20, that’s money going offshore, not staying here to boost our local economy.

    Consider this: buy an electric car, install a photovoltaic system (electricity-generating solar panels) on your roof that is big enough for your household and transport needs (and remember a typical day’s travel for Australians uses less electricity than a pool pump) and you have zero emissions and are free of international forces that control our transport energy supplies.

    Australians are leading the world in domestic photovoltaic installations.

    And remember this, you can recharge an electric car from any household power point – just like a phone, but on wheels.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    The University of New South Wales is an Australian public university with its largest campus in the Sydney suburb of Kensington.

    Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 QS World University Rankings and 67th in the world in the 2021 Times Higher Education World University Rankings. UNSW is one of the founding members of the Group of Eight, a coalition of Australian research-intensive universities, and of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world.

    According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW also leads Australia in Medicine, where the median ATAR (Australian university entrance examination results) of its Medical School students is higher than any other Australian medical school. UNSW enrolls the highest number of Australia’s top 500 high school students academically, and produces more millionaire graduates than any other Australian university.

    The university comprises seven faculties, through which it offers bachelor’s, master’s and doctoral degrees. The main campus is in the Sydney suburb of Kensington, 7 kilometres (4.3 mi) from the Sydney CBD. The creative arts faculty, UNSW Art & Design, is located in Paddington, and subcampuses are located in the Sydney CBD as well as several other suburbs, including Randwick and Coogee. Research stations are located throughout the state of New South Wales.

    The university’s second largest campus, known as UNSW Canberra at ADFA (formerly known as UNSW at ADFA), is situated in Canberra, in the Australian Capital Territory (ACT). ADFA is the military academy of the Australian Defense Force, and UNSW Canberra is the only national academic institution with a defense focus.

    Research centres

    The university has a number of purpose-built research facilities, including:

    UNSW Lowy Cancer Research Centre is Australia’s first facility bringing together researchers in childhood and adult cancers, as well as one of the country’s largest cancer-research facilities, housing up to 400 researchers.
    The Mark Wainwright Analytical Centre is a centre for the faculties of science, medicine, and engineering. It is used to study the structure and composition of biological, chemical, and physical materials.
    UNSW Canberra Cyber is a cyber-security research and teaching centre.
    The Sino-Australian Research Centre for Coastal Management (SARCCM) has a multidisciplinary focus, and works collaboratively with the Ocean University of China [中國海洋大學](CN) in coastal management research.

     
  • richardmitnick 7:33 am on May 12, 2021 Permalink | Reply
    Tags: , , , , , "Light meets superconducting circuits", Microwave superconducting circuit platforms, Using light to read out superconducting circuits thus overcoming the scaling challenges of quantum systems., HEMTs-low noise high electron mobility transistors, Replacing HEMT amplifiers and coaxial cables with a lithium niobate electro-optical phase modulator and optical fibers respectively., Optical fibers are about 100 times better heat isolators than coaxial cables and are 100 times more compact., Enabling the engineering of large-scale quantum systems without requiring enormous cryogenic cooling power.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH): “Light meets superconducting circuits” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH)

    5.12.21
    Amir Youssefi
    Nik Papageorgiou

    EPFL researchers have developed a light-based approach to read out superconducting circuits, overcoming the scaling-up limitations of quantum computing systems.

    1
    No image caption or credit.

    In the last few years, several technology companies including Google, Microsoft, and IBM, have massively invested in quantum computing systems based on microwave superconducting circuit platforms in an effort to scale them up from small research-oriented systems to commercialized computing platforms. But fulfilling the potential of quantum computers requires a significant increase in the number of qubits, the building blocks of quantum computers, which can store and manipulate quantum information.

    But quantum signals can be contaminated by thermal noise generated by the movement of electrons. To prevent this, superconducting quantum systems must operate at ultra-low temperatures – less than 20 milli-Kelvin – which can be achieved with cryogenic helium-dilution refrigerators.

    The output microwave signals from such systems are amplified by low-noise high-electron mobility transistors (HEMTs) at low temperatures. Signals are then routed outside the refrigerator by microwave coaxial cables, which are the easiest solutions to control and read superconducting devices but are poor heat isolators, and take up a lot of space; this becomes a problem when we need to scale up qubits in the thousands.

    Researchers in the group of Professor Tobias J. Kippenberg at EPFL’s School of Basic Sciences have now developed a novel approach that uses light to read out superconducting circuits thus overcoming the scaling challenges of quantum systems. The work is published in Nature Electronics.

    The scientists replaced HEMT amplifiers and coaxial cables with a lithium niobate electro-optical phase modulator and optical fibers respectively. Microwave signals from superconducting circuits modulate a laser carrier and encode information on the output light at cryogenic temperatures. Optical fibers are about 100 times better heat isolators than coaxial cables and are 100 times more compact. This enables the engineering of large-scale quantum systems without requiring enormous cryogenic cooling power. In addition, the direct conversion of microwave signals to the optical domain facilitates long-range transfer and networking between quantum systems.

    “We demonstrate a proof-of-principle experiment using a novel optical readout protocol to optically measure a superconducting device at cryogenic temperatures,” says Amir Youssefi, a PhD student working on the project. “It opens up a new avenue to scale future quantum systems.” To verify this approach, the team performed conventional coherent and incoherent spectroscopic measurements on a superconducting electromechanical circuit, which showed perfect agreement between optical and traditional HEMT measurements.

    Although this project used a commercial electro-optical phase modulator, the researchers are currently developing advanced electro-optical devices based on integrated lithium niobate technology to significantly enhance their method’s conversion efficiency and lower noise.

    Funding: Horizon 2020; Swiss National Science Foundation [Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung] [Fonds national suisse de la recherche scientifique] (CH) (NCCR-QSIT and Sinergia)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne](CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH). Associated with several specialized research institutes, the two universities form the Swiss Federal Institutes of Technology Domain (ETH(CH) Domain) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: