Recent Updates Page 2 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:29 pm on October 21, 2017 Permalink | Reply
    Tags: , , , , , Space Science Needs a Private-Funding Boost   

    From SA: “Space Science Needs a Private-Funding Boost” 

    Scientific American

    Scientific American

    October 21, 2017
    Jon A. Morse

    1
    One of the first photos taken by Hubble Space Telescope’s Wide Field Camera 3, installed in May 2009, shows the crowded core of the star cluster Omega Centauri. Credit: NASA, ESA, Hubble SM4 ERO Team

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble WFC3

    Basic research in the space sciences holds essentially limitless potential for tackling profound questions of our existence and opening the doors of exploration, innovation and future economic opportunity. Space science continues to generate extraordinary discoveries, whether groups are exploring Mars, investigating the fundamental physics of the universe or discovering new exoplanets around nearby stars.

    This drive to explore and exploit space has led to the emergence of new companies and innovations in traditional aerospace companies seeking to reform the way spacecraft are designed, built, launched and operated. There has also been a surge in private resources dedicated to creating new commercial capabilities and initiating the next wave of space exploration — though not yet for discovery-driven scientific missions. [NASA Could Reach Mars Faster with Public-Private Partnerships, Companies Tell Congress]

    It is encouraging to see that NASA is leaning more towards integrating commercial capabilities into how space science missions are implemented, especially for cubesats and small satellites. It is imperative that NASA embrace the many commercial capabilities that are becoming available in the small-sat market, which may reach $20 billion/year globally in the next few years. Such capabilities — including optical systems, sensors, spacecraft busses, launch vehicles and other mission elements — can be procured much more cheaply now than in recent years. These cheaper capabilities may not be represented in any costing models used during NASA scientific mission proposal reviews, and NASA must actively stay on top of such developments, perhaps even facilitating their use by candidate mission teams through workshops with relevant industry representatives.

    However, there are additional actions that NASA or other space agencies could take to accomplish high-priority science goals and increase the flight rate within a constrained fiscal environment.

    First, NASA needs to say in a steady stream of messaging that the agency desires private investment in space science missions. This message has been trumpeted for human spaceflight and space technology development, but for space science is generally an afterthought, sometimes mentioned as part of Q&A responses during advisory committee meetings, or is missing altogether in agency presentations.

    The NASA budget blueprint released in March 2017 boldly states in the very first sentence that the proposed budget “supports and expands public-private partnerships as the foundation of future U.S. civilian space efforts.” That would seem to include space science, but it is difficult to see how the space science portfolio is making such a transition. While it is common for institutions proposing a project to NASA to offer some salary support for mission team members and even make contributions to the payload, significant cost-sharing on space science missions addressing National Academy of Sciences priorities has yet to be demonstrated; instead, cost sharing tends to be accomplished through international partnerships.

    The main difficulty in executing private space science missions or increasing public-private partnerships is in securing private funding. There is noticeable progress in the number of self-funded university-based cubesat programs, and cubesats can accomplish interesting new science. But many high-priority science goals would need at least tens of millions of dollars of investment to build the appropriate spacecraft. There are several ways to approach fundraising, including through philanthropy, sponsorship and venture capital (in addition to cost sharing among different, perhaps international, organizations).

    Major philanthropic funding is commonplace in other scientific disciplines, i.e., medical research and ground-based astronomy, with modern project costs now on a par with those of sophisticated satellites, such as are developed in NASA’s Explorer, Discovery and New Frontiers programs. The nonprofit BoldlyGo Institute, founded in 2013, seeks to expand the philanthropic model to frontier space-based science missions — but the list of individuals or family foundations willing to support space science missions at seven- or eight-figure amounts may be limited. We, therefore, also propose additional mechanisms that NASA could employ to incentivize private investment, reduce mission costs and accelerate the pace of discovery.

    Besides considering funded Space Act Agreements, which are used in the human spaceflight program, as a procurement mechanism for small- and medium-class space science missions, NASA should also examine employing data buys and science prizes to lower costs and promote private investment and public-private partnerships. Our experience seeking private funding for space science indicates that significant venture capital could be available if there were even a modest return on investment.

    We do not usually consider scientific data as a commercial commodity, but if NASA were to offer a payout or science prize, analogous to the Google Lunar X Prize, or indicate that the agency would pay for certain data, such capital could be raised — as long as the payout or prize were roughly commensurate with the capital costs of the mission. NASA could pool resources with major research foundations and consult with the space science community to identify potential scientific goals that could be attained in this manner.

    Of course, this would be worthwhile only if significant cost savings could be realized compared to NASA’s traditional procurement and mission-development processes, making it possible to accomplish more missions (and more science) within a given budget. The dynamic, successful commercial satellite and launch industries, with entrepreneurial visionaries and nongovernmental sources of capital, now provide such cost-saving opportunities for many scientific applications. Now is the time to unleash this entrepreneurial spirit in the cause of basic scientific research and discovery.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

    Advertisements
     
  • richardmitnick 12:00 pm on October 21, 2017 Permalink | Reply
    Tags: , , , , , Trapping Dust to Form Planets   

    From AAS NOVA: ” Trapping Dust to Form Planets” 

    AASNOVA

    AAS NOVA

    20 October 2017
    Susanna Kohler

    1
    How do planets form from dust grains in protoplanetary disks such as the one depicted in this artist’s illustration? Vortices may be the answer. [ESO]

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.

    2
    Top: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]

    When Dust Growth Fails

    Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. There’s a challenge to this picture, though: the radial drift problem.

    The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains — perhaps around 1 millimeter — the drag force will cause the grains’ orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.

    A Close-Up Look with ALMA

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    So how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years — long enough to grow beyond the radial drift barrier.

    Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what we’re looking for.

    3
    Schematic of the authors’ model for the disk of V1247 Orionis. [Kraus et al. 2017]

    Trapped in a Vortex?

    ALMA’s observations of V1247 Orionis are reported by a team of scientists led by Stefan Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.

    Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.

    4
    Gas column density of the authors’ radiation-hydrodynamic simulation of V1247 Orionis’s disk. [Kraus et al. 2017]

    The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images that well match the ALMA images.

    How can we confirm V1247 Orionis provides an example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.

    Citation

    Stefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

    Related Journal Articles
    See the full article for further references with links.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 8:08 am on October 21, 2017 Permalink | Reply
    Tags: Atlas of The Underworld, , , ,   

    From Science Alert: “Scientists Are Mapping an Atlas of The Underworld Hidden Far Beneath Our Feet” 

    ScienceAlert

    Science Alert

    21 OCT 2017
    DAVID NIELD

    1
    Utrecht University

    For as long as humans have been around we’ve been fascinated by the world hiding underneath the surface of the Earth, and now scientists are systematically mapping the positions of the tectonic plates that have been pushed deeper into the planet’s core.

    It’s called the Atlas of the Underworld and you can view it online – measurements go down up to 2,900 kilometres (1,800 miles) in some cases. The focus is on ‘dead’ tectonic plates, pushed down to the bottom of the Earth’s mantle and no longer part of the surface.

    The Atlas has been produced through 15 years of work by the team from Utrecht University in the Netherlands, pulling together data from multiple sources as well as from their own seismic scans, using sound waves to measure the geological make-up of the ground.

    “This is the first time that the slabs all over the world have been mapped,” says one of the researchers, Wim Spakman. “Much of the information was already available, but mostly in the form of more or less isolated research projects. We have put all the pieces together, rather like a jigsaw.”

    2
    Credit: Atlas of the Underworld

    As tectonic plates of crust and mantle shift on the surface of the Earth, they’re causing volcanic activity and earthquakes, and sometimes triggering a process called subduction, where one plate is forced down into the Earth as it moves.

    The part of the plates being subducted are then termed “slabs”, as Spakman mentions above. These slabs can exist for millions of years without being melted by the heart of the Earth’s core, and the new Atlas tracks 94 of them across the globe.

    “Now we can trace not only how plates move over the surface, but how they sink to the core-mantle boundary,” one of the team, Douwe van Hinsbergen, told Ryan F. Mandelbaum at Gizmodo. “That’s the cool thing for me – we can learn about the physics inside the Earth.”

    The researchers have been able to tie slabs to their period of subduction, as well as to associated volcanic activity on the surface, or to mountain ranges still visible today, like the Andes or the Himalayas.

    Not only is it an impressive catalogue of the subterranean world, the Atlas can also teach scientists about how the mantle works – the pressures and timescales and movements involved in this hidden underworld.

    We can learn more about how the planet is evolving and how all of us living on the surface could be affected in the future: the Atlas has already been used to calculate CO2 emitted by volcanic activity, for instance, and how sea levels have changed over millions of years.

    Through the Atlas, the scientists have also discovered a Slab Deceleration Zone some 1,500-2,000 kilometres (932-1,243 miles) below the surface, where slabs slow down but don’t stop, before later accelerating towards the core.

    And the team is hoping many more discoveries like this will happen in the future as the underworld map gets refined and expanded.

    “Making an atlas is a long-term work of precision, and the end result may at first sight look like a coffee table book,” says van Hinsbergen.

    “But it should be remembered how often people use world atlases for purposes that never crossed the maker’s mind. We expect the same to be true of the Atlas of the Underworld for geoscientists.”

    The research has been published in Tectonophysics.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:19 am on October 21, 2017 Permalink | Reply
    Tags: , , , , , , ,   

    From ALMA: “Launch of ChiVO, the first Chilean Virtual Observatory” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ALMA

    Valeria Foncea
    Education and Public Outreach Officer
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 467 6258
    Cell: +56 9 75871963
    Email: vfoncea@alma.cl

    After more than two years of work, today was launched the first Chilean Virtual Observatory (ChiVO), an astro-informatic platform for the administration and analysis of massive data coming from the observatories built across the country. Its implementation will provide advanced computing tools and research algorithms to the Chilean astronomical community.

    “This project is a major contribution for Chilean astronomers -said Diego Mardones, an astronomer at Universidad de Chile- because besides being an excellent tool for exploring the huge quantity of astronomical data that will be generated in our country in the coming years, it opens new opportunities of interdisciplinary research.”

    2
    ChiVO main team. Left to right: Paulina Troncoso, Astronomer; Ricardo Contreras, U. of Concepción; Jorge Ibsen, ALMA; Mauricio Solar, ChiVO’s director, U. Técnica Federico Santa María (UFSM); Paola Arellano, REUNA; Victor Parada, U. of Santiago; Marcelo Mendoza, ChiVO’s alternate director, UFSM; Diego Mardones, U. of Chile; Mauricio Araya, UFSM; María; Guillermo Cabrera, U. of Chile.

    The project led by Universidad Técnica Federico Santa María (UTFSM) is a successful collaboration with four other universities in Chile (Universidad de Chile, Universidad Católica, Universidad de Concepción y Universidad de Santiago) and was funded by FONDEF, the Chilean Scientific and Technological Development Fund. Furthermore, both the Atacama Large Millimeter/submillimeter Array (ALMA) and REUNA, the National Universities Network, are associated to the project. Thanks to ChiVO, Chile will become a member of the International Virtual Observatories Alliance (IVOA) and it will be accessible for all astronomers making their research in the country through its website http://www.chivo.cl.

    For the project’s director, Mauricio Solar, “this innovation will allow astronomical data to be processed in Chile using high-quality, local human capital and integrating Chilean astro-informatics with the international community at the highest levels of development.”

    With new telescopes being constructed in Chile, the amount of astronomical data generated will only increase. As an example, once ALMA is operating at full capacity, it will produce close to 250 terabytes of data each year. ChiVO will enable Chilean astronomers to access this data with high transfer rates, provide the infrastructure for high storage capacity and access the analysis of the data.

    “ChiVO and the services provided by it will be a key tool for the Chilean astronomical community, added Jorge Ibsen, director of ALMA’s Department of Computing. “ALMA is proud to be part of this project that will boost the usage of the astronomical data generated in the country.

    Link to ChiVO

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 7:07 am on October 21, 2017 Permalink | Reply
    Tags: ADASS, , , , , , , , ,   

    From ALMA: “ALMA Organizes International Astroinformatics Conference in Chile” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ALMA

    20 October, 2017

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    nicolas.lira@alma.cl

    Andrea Riquelme P.
    Journalist
    ADASS – Chile
    Cell phone: +56 9 93 96 96 38
    acriquelme@gmail.com

    Related Posts
    Launch of ChiVO, the first Chilean Virtual Observatory

    1
    Experts from 33 countries will attend the global Astronomical Data Analysis Software & Systems (ADASS) conference, which brings together astronomy and computer science. Organized by the Atacama Large Millimeter/submillimeter Array (ALMA), the European Southern Observatory (ESO) and the Universidad Técnica Federico Santa María (UTFSM), from October 22 to 26 for the first time in Chile, ADASS will seek to develop astronomy and other industries, providing an opportunity to promote local talent to the rest of the world.

    Chile is a privileged setting for astronomic observation and data collection, generating an enormous amount of public data. The ALMA observatory alone generates a terabyte of data per day; the LSST will reach 30 terabytes per night by 2022 and the SKA 360 terabytes per hour by 2030.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    This evolution implies a never seen before data storage and analysis challenge, and Chile is in a position to lead this progress with the support of data, communication and technology platforms and expert human capital with the support of this potent cloud computing era. Herein lies the importance of Chile’s debut as Latin American headquarters for the International Astronomical Data Analysis Software & Systems-ADASS Conference, which after 27 years in practice, has chosen the country as its meeting location.
    Invited speakers. Credit: ADASS 2017 website (www.adass.cl)

    2
    ADASS Invited speakers. Credit: ADASS 2017 website (www.adass.cl)

    “A modern observatory today is a true data factory, and the creation of systems and infrastructure capable of storing this data and analyzing and sharing it will contribute to the democratization of access to current, critical and unique information, necessary for the hundreds of groups of researchers of the Universe around the world,” says Jorge Ibsen, Head of the ALMA Computing Department and Co-Chair of ADASS.

    The Chilean Virtual Observatory (ChiVO) and The International Virtual Observatory Alliance (IVOA), have worked together for years to define standards for sharing data between observatories around the world and to create public access protocols. Mauricio Solar, Director of ChiVO and Co-Chair of the ADASS conference, assures that Chile can contribute to astronomy, not just through astronomers, but also through the development of applications in astroinformatics that, for example, can help find evidence of extraterrestrial life.

    3
    Local Organizing Committee. Credit: ADASS 2017 website (http://www.adass.cl)

    Astroinformatics combines advanced computing, statistics applied to mass complex data, and astronomy. Topics to be addressed at ADASS include: high-performance computing (HPC) for astronomical data, human-computer interaction and interfaces for large data collections, challenges in the operation of large-scale highly complex instrumentation, network infrastructure and data centers in the era of mass data transfer, machine learning applied to astronomical data, and software for the operation of Earth and space observatories, diversity and inclusion, and citizen education and science, among other subjects.

    The ADASS Conference will bring together 350 experts from 33 countries at the Sheraton Hotel in Santiago, and will be followed by an Interoperability Meeting of the International Virtual Observatories Alliance (IVOA), organized by ChiVO, from October 27 to 29. More information at http://www.adass.cl.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 9:00 pm on October 20, 2017 Permalink | Reply
    Tags: , , , , , , Neutron stars gravitational waves and all the gold in the universe, ,   

    From UCSC: “Neutron stars, gravitational waves, and all the gold in the universe” 

    UC Santa Cruz

    UC Santa Cruz

    14

    A UC Santa Cruz special report

    Tim Stephens

    Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

    2
    The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

    A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

    “Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

    These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

    THE MERGER

    Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

    Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

    3
    The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.


    A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

    ALL THE GOLD IN THE UNIVERSE

    It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

    4
    The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

    A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

    Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

    According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

    RIPPLES IN THE FABRIC OF SPACE-TIME

    Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

    Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

    The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

    LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

    LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

    “This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

    IN THIS REPORT

    Neutron stars
    A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

    5
    Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

    “We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

    7
    David Coulter, graduate student

    The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

    “I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

    “Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

    8
    Charles Kilpatrick, postdoctoral scholar

    Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

    9
    Ariadna Murguia-Berthier, graduate student

    “In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

    At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

    10
    Matthew Siebert, graduate student

    “It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

    Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

    It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

    11
    César Rojas Bravo, graduate student

    Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

    Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

    Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

    12
    Yen-Chen Pan, postdoctoral scholar

    “There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

    13
    Enia Xhakaj, graduate student

    IN THIS REPORT

    Scientific Papers from the 1M2H Collaboration

    Coulter et al., Science, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source

    Drout et al., Science, Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Siebert et al., ApJL, The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

    Pan et al., ApJL, The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Kasen et al., Nature, Origin of the heavy elements in binary neutron star mergers from a gravitational wave event

    Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

    Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

    PRESS RELEASES AND MEDIA COVERAGE


    Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

    Press releases:

    UC Santa Cruz Press Release

    UC Berkeley Press Release

    Carnegie Institution of Science Press Release

    LIGO Collaboration Press Release

    National Science Foundation Press Release

    Media coverage:

    The Atlantic – The Slack Chat That Changed Astronomy

    Washington Post – Scientists detect gravitational waves from a new kind of nova, sparking a new era in astronomy

    New York Times – LIGO Detects Fierce Collision of Neutron Stars for the First Time

    Science – Merging neutron stars generate gravitational waves and a celestial light show

    CBS News – Gravitational waves – and light – seen in neutron star collision

    CBC News – Astronomers see source of gravitational waves for 1st time

    San Jose Mercury News – A bright light seen across the universe, proving Einstein right

    Popular Science – Gravitational waves just showed us something even cooler than black holes

    Scientific American – Gravitational Wave Astronomers Hit Mother Lode

    Nature – Colliding stars spark rush to solve cosmic mysteries

    National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

    Associated Press – Astronomers witness huge cosmic crash, find origins of gold

    Science News – Neutron star collision showers the universe with a wealth of discoveries

    UCSC press release
    First observations of merging neutron stars mark a new era in astronomy

    Credits

    Writing: Tim Stephens
    Video: Nick Gonzales
    Photos: Carolyn Lagattuta
    Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
    Design and development: Rob Knight
    Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

    Noted in the vdeo but not in te article:

    NASA/Chandra Telescope

    NASA/SWIFT Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    Prompt telescope CTIO Chile

    NASA NuSTAR X-ray telescope

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 5:07 pm on October 20, 2017 Permalink | Reply
    Tags: , , , Visualizing Science 2017: Finding the Hidden Beauty in College Research   

    From U Texas at Austin: “Visualizing Science 2017: Finding the Hidden Beauty in College Research” 

    U Texas Austin bloc

    University of Texas at Austin

    20 October 2017
    Steven E Franklin

    Five years ago the College of Natural Sciences began an annual tradition called Visualizing Science with the intent of finding the inherent beauty hidden within scholarly research. Each spring faculty, staff and students in our college community are invited to send us images that celebrate the splendor of science and the scientific process. Every year they deliver the moments where science and art meld and become one, and this year is no exception.

    The pursuit of scientific discovery often contains a visual aspect, as researchers explore the topics that fascinate them and attempt to communicate their discoveries in a meaningful way. History is rife with examples: Su Song drew detailed star maps, Charles Darwin sketched evolutionary trees in his notes, Rosalind Franklin’s X-ray diffraction images were vital to determining the structure of DNA, and Richard Feynman’s diagrams helped transform theoretical physics, to name a few.

    Now, with the advent of supercomputers and sophisticated software, scientific visualizations are becoming an invaluable part of the discovery process. Many modern scientists use 3-D models and data visualizations to uncover hidden patterns in data, to expose the inner workings of life or to reveal the very structure of the universe. This trend is exemplified by several of our newest Visualizing Science award winners.

    The winning images this year were publically revealed at Art in Science, an event put on by our Natural Sciences Council as part of Natural Sciences Week. These finalists, seven of the most stunning submissions from our scientific community, are featured below. The first six images were chosen by committee based on their beauty and scientific merit. The final image, our Facebook favorite, was chosen by the public on our Facebook page. The first six images will be displayed on campus in The University of Texas at Austin Tower and the Kuehne Physics Mathematics Astronomy Library, as well as on digital screens throughout buildings in the College of Natural Sciences.

    Please enjoy the fruits of our fifth annual Visualizing Science competition:

    First Place
    1
    Most stars in the Universe are not in isolation, but rather form in clusters. In the most compact clusters, a million stars as bright as a billion suns are packed within just a few light-years. This image shows the turbulent gas structures in a three-dimensional, multi-physics supercomputer simulation during the formation of such massive clusters, with the red-to-violet rainbow spectrum representing gas at high-to-low densities. Stars are the fundamental building blocks of galaxies, and of the Universe as a whole, and understanding star formation provides crucial insights to the history and future of our cosmos. The simulation and the visualization were produced locally on the Texas-sized supercomputers, Stampede and Lonestar 5, at the Texas Advanced Computing Center (TACC). — Benny Tsang, Astronomy Graduate Student.

    TACC Maverick HP NVIDIA supercomputer

    TACC Lonestar Cray XC40 supercomputer

    Dell Poweredge U Texas Austin Stampede Supercomputer. Texas Advanced Computer Center 9.6 PF

    TACC HPE Apollo 8000 Hikari supercomputer

    TACC Maverick HP NVIDIA supercomputer

    Second Place
    2
    This three-dimensional high-resolution X-ray computed tomography (CT) image differentiates between the bony chainmail (in orange) embedded in the skin of a Komodo Dragon and the underlying bones of its skull (in white). The chainmail is formed by bony deposits in the head called cephalic osteoderms. The Komodo was donated by the Fort Worth Zoo after its death. Travis LaDuc catalogued the specimen into the Biodiversity Collections and made arrangements to have it scanned by Jessie Maisano in the Jackson School of Geosciences’s CT facility. The image is part of a manuscript being submitted to a scientific journal, featuring four authors: Chris Bell and Jessie Maisano of UT Jackson School of Geosciences; Diane Barber of the Ft. Worth Zoo; and LaDuc. — Travis LaDuc, Curator of Herpetology in the Department of Integrative Biology.

    Third Place
    3
    In this computer simulation of a diffusion process, particles are dropped in the center of a circle and then move randomly about its area until they meet another particle to which they stick. As they accumulate, the particles form growing fractal structures that are called Brownian Trees. One example of where these structures can be found in nature is in electro-chemical deposition processes, such as electroplating. — Lukas Gradl, Physics Graduate Student.

    Honorable Mentions
    4
    A close-up of a fabric that was embroidered using algorithmic design and patterning. The process includes programming the repetitive algorithm, designing and trying a pattern that will work best in holding the structure, hand folding, industrial steaming and chemical treatment. — Luisa Gil Fandino, Lecturer, Division of Textiles and Apparel.
    5
    Quantum computers run on magic states, a valuable resource required for some quantum operations. Understanding which quantum states are magic and which are not can be tricky. When states are plotted in 3-D space, the magic states form a bubbly fractal, as seen here. — Patrick Rall, Physics Graduate Student.
    6
    Newton’s method is a way of finding where a function is equal to zero. It’s simple and generally very effective, but small changes in the input can lead to large differences in the output. Though this makes its implementation more difficult, it also creates a fractal structure called a Newton fractal. In this image, Newton’s method was applied to many different inputs to graph the fractal: color represents the output of the algorithm, and shading represents its convergence time. — Arun Debray, Mathematics Graduate Student.

    Facebook Favorite
    7
    This photo captures a serendipitous moment during a trip to Port Aransas for a Field Study Seminar course in Environmental Science. Alec was using a hand lens to take notes about the grain type of the beach sand when a honeybee landed on his lab partner’s hand. Alec held his lens up to the bee, quickly grabbed the camera from his bag and snapped the picture before the visitor bee flew off. — Alec Blair, Environmental Science (Biological Sciences option) Undergraduate Student

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Texas Arlington Campus

    In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

     
  • richardmitnick 4:16 pm on October 20, 2017 Permalink | Reply
    Tags: , , , , ICUAA,   

    From IUCAA via Yogesh Sharma: ““Saraswati” – one of the most massive large-scale structures in the Universe discovered” 

    IUCAA

    Indian astrophysicists identify mega-structure of galaxies 4 billion light-years away – several scholars and faculty of Indian Universities involved

    1
    The distribution of galaxies, from Sloan Digital Sky Survey (SDSS), in Saraswati supercluster. Credit: IUCAA

    A team of astronomers from the Inter University Centre for Astronomy & Astrophysics (IUCAA), and Indian Institute of Science Education and Research (IISER), both in Pune, India, and members of two other Indian universities, have identified a previously unknown, extremely large supercluster of galaxies located in the direction of constellation Pisces. This is one of the largest known structures in the nearby Universe, and is at a distance of 4,000 million (400 crore) light-years away from us.

    This novel discovery is being published in the latest issue of The Astrophysical Journal, the premier research journal of the American Astronomical Society.

    Large-scale structures in the Universe are found to be hierarchically assembled, with galaxies, together with associated gas, and dark matter, being clumped in clusters, which are organized with other clusters, smaller groups, filaments, sheets and large empty regions (“voids”) in a pattern called the “Cosmic web” which spans the observable Universe.

    Superclusters are the largest coherent structures in the Cosmic Web. A Supercluster is a chain of galaxies and galaxy clusters, bound by gravity, often stretching to several hundred times the size of clusters of galaxies, consisting of tens of thousands of galaxies. This newly-discovered ‘Saraswati’ supercluster, for instance, extends over a scale of 600 million light-years and may contain the mass equivalent of over 20 million billion suns.

    When astronomers look far away, they see the Universe from long ago, since light takes a while to reach us. The Saraswati supercluster is observed as it was when the Universe was 10 billion years old.

    The long-popular “Cold dark matter” model of the evolution of the Universe predicts that small structures like galaxies form first, which congregate into larger structures. Most forms of this model do not predict the existence of large structures such as the “Saraswati Supercluster” within the current age of the Universe. The discovery of these extremely large structures thus force astronomers into re-thinking the popular theories of how the Universe got its current form, starting from a more-or-less uniform distribution of energy after the Big Bang. In recent years, the discovery of the present-day Universe being dominated by “Dark Energy”, which behaves very differently from Gravitation, might play a role in the formation of these structures.

    It is believed that galaxies are formed mostly on the filaments and sheets that are part of the cosmic web, and many of the galaxies travel along these filaments, ending up in the rich clusters, where the crowded environment switches off their star formation and aids in the transformation of galaxies to disky blue spiral galaxies to red elliptical galaxies. Since there is an extensive variation of environment within a Supercluster, galaxies travel through these varied environments during their “lifetime”. To understand their formation and evolution, one needs to identify these Superclusters and closely study the effect of their environment on the galaxies. This is a very new research area- with the aid of observations of new observational facilities, astronomers are now beginning to understand galaxy evolution. This discovery will greatly enhance this field of research.

    “Saraswati” (or “Sarasvati”), a word that has proto-Indo-European roots, is a name found in ancient Indian texts to refer to the major river around which the people of the ancient Indian civilization lived. It is also the name of the celestial goddess who is the keeper of the celestial rivers. In modern India, Saraswati is worshipped as the goddess of knowledge, music, art, wisdom and nature – the muse of all creativity.

    Our own galaxy is part of a Supercluster called the Laniakea Supercluster, announced in 2014 by Brent Tully at the University of Hawaii and collaborators.

    Laniakea supercluster. From Nature The Laniakea supercluster of galaxies R. Brent Tully, Hélène Courtois, Yehuda Hoffman & Daniel Pomarède at http://www.nature.com/nature/journal/v513/n7516/full/nature13674.html. Milky Way is the red dot.

    Interestingly, Somak Raychaudhury, currently Director of IUCAA, Pune, who is a co-author of this paper, also discovered the first massive Supercluster of galaxies on this scale (the “Shapley Concentration”), during his PhD research at the University of Cambridge.

    4
    Map of the Shapley Supercluster
    Date 14 March 2009 (original upload date)
    Author Richard Powell

    In his paper, published in the journal Nature in 1989, he had named the supercluster after the American astronomer Harlow Shapley, in recognition of his pioneering survey of galaxies, from the Southern hemisphere, in which this massive super-structure was first imaged, way back in 1932.

    Joydeep Bagchi from IUCAA, the lead author of the paper and co-author Shishir Sankhyayan (PhD scholar at IISER, Pune) said, ‘’We were very surprised to spot this giant wall-like supercluster of galaxies, visible in a large spectroscopic survey of distant galaxies, known as the Sloan Digital Sky Survey (see figure above). This supercluster is clearly embedded in a large network of cosmic filaments traced by clusters and large voids. Previously only a few comparatively large superclusters have been reported, for example the ‘Shapley Concentration’ or the ‘Sloan Great Wall’ in the nearby universe, while the ‘Saraswati’ supercluster is far more distant one. Our work will help to shed light on the perplexing question; how such extreme large scale, prominent matter-density enhancements had formed billions of years in the past when the mysterious Dark Energy had just started to dominate structure formation.’’

    Sloan Great Wall, SDSS

    Our work will help to shed light on the perplexing question; how such extreme large scale, prominent matter-density enhancements had formed billions of years in the past when the mysterious Dark Energy had just started to dominate structure formation.’’

    2
    Two most massive clusters of galaxies in the Saraswati supercluster : “ABELL 2631” cluster (left) and “ZwCl 2341.1+0000” cluster (right). “ABELL 2631” resides in the core of the Saraswatisupercluster. The Saraswati supercluster has a total of 43 clusters of galaxies.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission

    The Inter-University Centre for Astronomy and Astrophysics (IUCAA) is an autonomous institution set up by the University Grants Commission (UGC) of India to promote the nucleation and growth of active groups in astronomy and astrophysics at Indian universities. IUCAA aims to be a centre of excellence within the university sector for teaching, research and development in astronomy and astrophysics.

    Organisation

    IUCAA’s activities fall under two broad programmes: core academic programmes and visitor academic programmes. Core academic programmes include basic research, the PhD programme, advanced research workshops and schools, the giant metre-wave radio telescope and guest observer programmes. Visitor academic programmes include the visitor and associates programme, refresher courses for teachers and helping the nucleation and growth of astronomy and astrophysics at Indian universities.

     
  • richardmitnick 2:34 pm on October 20, 2017 Permalink | Reply
    Tags: , , , , , ,   

    From Universe today: “Where Do Comets Come From? Exploring the Oort Cloud” 

    universe-today

    Universe Today

    19 Oct , 2017
    Fraser Cain

    Oort cloud Image by TypePad, http://goo.gl/NWlQz6


    Oort Cloud NASA

    Oort Cloud, The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA, Universe Today

    Before I get into this article, I want to remind everyone that it’s been several decades since I’ve been able to enjoy a bright comet in the night sky. I’ve seen mind blowing auroras, witnessed a total solar eclipse with my own eyeballs, and seen a rocket launch. The Universe needs to deliver this bright comet for me, and it needs to do it soon.

    By writing this article now, I will summon it. I will create an article that’ll be hilariously out of date in a few months, when that bright comet shows up.

    Like that time we totally discovered a supernova in the Virtual Star Party, by saying there wasn’t a supernova in that galaxy, but there was, and we didn’t get to make the discovery.

    Anyway, on to the article. Let’s talk about comets.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:47 pm on October 20, 2017 Permalink | Reply
    Tags: A new type of Kuiper Belt Object (KBO) called "Blue Binaries", , , New clues about the early evolution of the Solar System revealed with simultaneous observations on Maunakea, OSSOS (Col-OSSOS) program   

    From CFHT: “New clues about the early evolution of the Solar System revealed with simultaneous observations on Maunakea.” 

    CFHT icon
    Canada France Hawaii Telescope

    4/04/2017 [Just found in social media]
    Media contact
    Mary Beth Laychak
    Outreach Manager
    Canada-France-Hawaii Telescope
    +1 808 885 3121
    mary@cfht.hawaii.edu

    Peter Michaud
    Public Information and Outreach Manager
    Gemini Observatory
    Hilo, Hawai‘i
    Email: pmichaud”at”gemini.edu
    Desk: 808 974-2510
    Cell: 808 936-6643

    Science contacts:

    Wes Fraser
    Col-OSSOS principle investigator
    Queen’s University Belfast.
    Belfast, UK

    Michele Bannister
    Col-OSSOS collaborator, OSSOS Core member
    Queen’s University, Belfast
    Belfast UK
    +44 074 555 471 79
    m.bannister@qub.ac.uk

    JJ Kavelaars
    Col-OSSOS collaborator, OSSOS Co-PI
    NRC Herzberg Astronomy and Astrophysics
    Victoria, BC, Canada
    +1 778 677 3131
    jjk@uvic.ca

    Meg Schwamb
    Col-OSSOS collaborator
    Gemini North
    Hilo, Hawaii
    +1 808 974 2593 (office), +1 808 315 8014 (home)
    mschwamb@gemini.edu

    Todd Burdullis
    QSO specialist, Col-OSSOS collaborator
    CFHT
    Waimea, Hawaii
    +1 808 885 3170

    An international team of astronomers led by Wes Fraser of Queen’s University in Belfast used CFHT and Gemini simultaneously to discover a new type of Kuiper Belt Object (KBO) called “Blue Binaries”. The wide separation and color of these cold classical Kuiper Belt objects are providing important clues on the early evolution of the solar system. Their findings are published in the April 4 edition of Nature Astronomy.

    Gemini/North telescope at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    CFHT, at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    Simultaneous observing on Maunakea. Both telescope are pointing at the same object at the same time. Coordinating observations like this between two major observatories is quite a challenge but provides big returns. Credit: Gemini Observatory/AURA, photo by Joy Pollard.

    The Kuiper Belt is a circumstellar disk in the outer Solar System extending from beyond the orbit of Neptune to about 50 AU from the Sun. The dynamical structure of the classical Kuiper Belt is divided in two components. The hot component is made of objects with eccentric and highly inclined orbits. They have a broad range of colors and about 10% of them are binaries. On the other hand, the cold component consist of objects with nearly circular orbits and low inclination. Their colors are typically red and have a higher occurrence of binaries, about 30%.

    In February 2013, CFHT started the Outer Solar System Origins Survey (OSSOS), a Large Program that was awarded 560 hours of observing time over 4 years to find and track objects in the outer Solar System using Megaprime. OSSOS was completed in January 2017 and was highly successful, discovering nearly 1000 Trans Neptunian Objects that inhabit the outer Solar system.

    The Colors of OSSOS (Col-OSSOS) program aimed to measure the colors of the cold classical Kuiper belt objects found by the OSSOS program. The team used CFHT and Gemini to gather colors from the ultraviolet to the infrared. The need for simultaneous observations came from the fact that these bodies rotate reasonably fast, on the order of one to a few hours so sychronous observations are important to ensure the team observed the same position at the same time in different colors. “Facilitating the simultaneous observations with the Col-OSSOS team and Gemini Observatory was challenging, but paved the way for a greater understanding of the origins of these blue binaries. In tandem, the two facilities observed all the colors of the outer solar system for the Col-OSSOS team” said Todd Burdullis, queued service observing operations specialist at CFHT who was in charge the CFHT observations and a coauthor of the study. Dr. Meg Schwamb, an astronomer at the Gemini Observatory and also a coauthor on the paper added: “Like synchronized swimmers, Gemini North and the Canada-France-Hawaii telescopes coordinated their movements to observe the Col-OSSOS Kuiper belt objects at nearly the same time. This created a unique dataset that the planetesimals’ brightness changes as they rotate, and led to this discovery.”

    Five of the OSSOS objects are blue, very peculiar for objects belonging to the cold classical Kuiper Belt which are usually red. Additionally, these blue objects are wide binaries. The presence of so many widely separated blue binaries in the cold classical Kuiper Belt is difficult to explain.

    In their Nature paper, the team explored different mechanism that would lead to this configuration and estimated that the best model reproducing the observations is a “push out” by the early phases of the outward migration of Neptune. In order keep the binary systems intact i.e. not splitting them apart, the outward motion of Neptune had to be very smooth and eventless. “This research has opened the window to new aspects of understanding the early stages of planet growth. We now have a solid handle on how and where these blue binaries originated” said Wes Fraser, first author of the study.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The CFH observatory hosts a world-class, 3.6 meter optical/infrared telescope. The observatory is located atop the summit of Mauna Kea, a 4200 meter, dormant volcano located on the island of Hawaii. The CFH Telescope became operational in 1979. The mission of CFHT is to provide for its user community a versatile and state-of-the-art astronomical observing facility which is well matched to the scientific goals of that community and which fully exploits the potential of the Mauna Kea site.

    CFHT Telescope
    CFHT Interior
    CFHT

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: