Updates from June, 2016 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:52 pm on June 9, 2016 Permalink | Reply
    Tags: 2002 image of Cone Nebula, , ,   

    From Hubble: “Hubble’s newest camera images ghostly star-forming pillar of gas and dust” 2002 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    1

    Resembling a nightmarish beast rearing its head from a crimson sea, this celestial object is actually just a pillar of gas and dust. Called the Cone Nebula (in NGC 2264) – so named because in ground-based images it has a conical shape – this monstrous pillar resides in a turbulent star-forming region. This picture, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope, shows the upper 2.5 light-years of the Cone, a height that equals 23 million roundtrips to the Moon. The entire pillar is seven light-years long.

    NASA/ESA Hubble ACS
    NASA/ESA Hubble ACS

    Radiation from hot, young stars (located beyond the top of the image) has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. There, additional ultraviolet radiation causes the hydrogen gas to glow, which produces the red halo of light seen around the pillar. A similar process occurs on a much smaller scale to gas surrounding a single star, forming the bow-shaped arc seen near the upper left side of the Cone. This arc, seen previously with the Hubble telescope, is 65 times larger than the diameter of our Solar System. The blue-white light from surrounding stars is reflected by dust. Background stars can be seen peeking through the evaporating tendrils of gas, while the turbulent base is pockmarked with stars reddened by dust.

    Over time, only the densest regions of the Cone will be left. But inside these regions, stars and planets may form. The Cone Nebula resides 2500 light-years away in the constellation Monoceros.

    The Cone is a cousin of the M16 pillars, which the Hubble telescope imaged in 1995.

    Pillars of Creation. NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
    Pillars of Creation. NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

    Consisting mainly of cold gas, the pillars in both regions resist being eroded away by the blistering ultraviolet radiation from young, massive stars. Pillars like the Cone and M16 are common in large regions of star birth. Astronomers believe that these pillars may be incubators for developing stars.

    The ACS made this observation on 2 April 2002. The colour image is constructed from three separate images taken in blue, near-infrared, and hydrogen-alpha filters.

    Image credit: NASA, the ACS Science Team (H. Ford, G. Illingworth, M. Clampin, G. Hartig, T. Allen, K. Anderson, F. Bartko, N. Benitez, J. Blakeslee, R. Bouwens, T. Broadhurst, R. Brown, C. Burrows, D. Campbell, E. Cheng, N. Cross, P. Feldman, M. Franx, D. Golimowski, C. Gronwall, R. Kimble, J. Krist, M. Lesser, D. Magee, A. Martel, W. J. McCann, G. Meurer, G. Miley, M. Postman, P. Rosati, M. Sirianni, W. Sparks, P. Sullivan, H. Tran, Z. Tsvetanov, R. White, and R. Woodruff) and ESA

    Credit:
    NASA, Holland Ford (JHU), the ACS Science Team and ESA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    Advertisements
     
  • richardmitnick 2:11 pm on June 2, 2016 Permalink | Reply
    Tags: , , , NASA's Hubble Finds Universe Is Expanding Faster Than Expected   

    From Hubble: “NASA’s Hubble Finds Universe Is Expanding Faster Than Expected” 

    NASA Hubble Banner

    NASA Hubble Telescope
    Hubble

    There is a Keck observatory article on this same subject. The reference to the Keck article is below.

    June 2, 2016
    Donna Weaver
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493
    dweaver@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Adam Riess
    Space Telescope Science Institute, Baltimore, Maryland
    410-516-4474
    ariess@stsci.edu

    1

    2

    3
    Cosmic Distance Ladder from ESA
    Astronomers have used Hubble to measure the distances to stars in nineteen galaxies more accurately than previously possible. They found that the Universe is currently expanding faster than the rate derived from measurements of the Universe shortly after the Big Bang. If confirmed, this apparent inconsistency may be an important clue to understanding three of the Universe’s most elusive components: dark matter, dark energy and neutrinos.

    Fast Facts
    Object Name: UGC 9391
    Object Description: Barred spiral galaxy
    Position (J2000): R.A. 14h 34m 37.02s
    Dec. +59° 20′ 16.12″
    Constellation: Draco
    Distance: 130 million light-years (40 million parsecs)
    About the Data
    Data Description:

    Data were provided by the HST proposal 12880: A. Riess (JHU/STScI), L. Macri (Texas A&M University), A. Filippenko (University of California, Berkeley), S. Jha (Rutgers), S. Casertano (STScI), P. Nugent (Lawrence Berkeley National Laboratory), and M. Ganeshalingam (University of California, Berkeley).

    The science team comprises: A. Riess (JHU/STScI), L. Macri and S. Hoffmann (Texas A&M University), D. Scolnic (JHU/University of Chicago), S. Casertano (STScI), A. Filippenko (University of California, Berkeley), B. Tucker (University of California, Berkeley/Mount Stromlo Observatory), M. Reid (Harvard-Smithsonian Center for Astrophysics), D. Jones (JHU), J. Silverman (University of Texas, Austin), R. Chornock (Ohio University, Athens), P. Challis (Harvard-Smithsonian Center for Astrophysics), W. Yuan (Texas A&M University), and R. Foley (University of Illinois, Urbana-Champaign).
    Instrument: WFC3/UVIS
    Exposure Date(s): December 2012 – March 2013

    Astronomers using NASA’s Hubble Space Telescope have discovered that the universe is expanding 5 percent to 9 percent faster than expected.

    “This surprising finding may be an important clue to understanding those mysterious parts of the universe that make up 95 percent of everything and don’t emit light, such as dark energy, dark matter, and dark radiation,” said study leader and Nobel Laureate Adam Riess of the Space Telescope Science Institute and The Johns Hopkins University, both in Baltimore, Maryland.

    The results* will appear in an upcoming issue of The Astrophysical Journal.

    There are a few possible explanations for the universe’s excessive speed. One possibility is that dark energy, already known to be accelerating the universe, may be shoving galaxies away from each other with even greater — or growing — strength.

    Another idea is that the cosmos contained a new subatomic particle in its early history that traveled close to the speed of light. Such speedy particles are collectively referred to as “dark radiation” and include previously known particles like neutrinos. More energy from additional dark radiation could be throwing off the best efforts to predict today’s expansion rate from its post-big bang trajectory.

    The boost in acceleration could also mean that dark matter possesses some weird, unknown characteristics. Dark matter is the backbone of the universe upon which galaxies built themselves up into the large-scale structures seen today.

    And finally, the speedier universe may be telling astronomers that Einstein’s theory of gravity is incomplete.

    Riess’ team made the discovery by refining the universe’s current expansion rate to unprecedented accuracy, reducing the uncertainty to only 2.4 percent. The team made the refinements by developing innovative techniques that improved the precision of distance measurements to faraway galaxies.

    These measurements are fundamental to making more precise calculations of how fast the universe expands with time, a value called the Hubble constant. The improved Hubble constant value is 73.2 kilometers per second per megaparsec. (A megaparsec equals 3.26 million light-years.) The new value means the distance between cosmic objects will double in another 9.8 billion years.

    This refined calibration presents a puzzle, however, because it does not quite match the expansion rate predicted for the universe from its trajectory seen shortly after the big bang. Measurements of the afterglow from the big bang by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and the European Space Agency’s Planck satellite mission yield predictions for the Hubble constant that are 5 percent and 9 percent smaller, respectively.

    Cosmic Microwave Background per ESA/Planck
    Cosmic Microwave Background per ESA/Planck

    ESA/Planck
    ESA/Planck

    “We know so little about the dark parts of the universe, it’s important to measure how they push and pull on space over cosmic history,” said Lucas Macri of Texas A&M University in College Station, a key collaborator on the study.

    Added Riess: “If we know the initial amounts of stuff in the universe, such as dark energy and dark matter, and we have the physics correct, then you can go from a measurement at the time shortly after the big bang and use that understanding to predict how fast the universe should be expanding today. However, if this discrepancy holds up, it appears we may not have the right understanding, and it changes how big the Hubble constant should be today.”

    Comparing the universe’s expansion rate with WMAP, Planck, and the Hubble Space Telescope is like building a bridge, Riess explained. On the distant shore are the cosmic microwave background observations of the early universe. On the nearby shore are the measurements made by Riess’ team using Hubble.

    “You start at two ends, and you expect to meet in the middle if all of your drawings are right and your measurements are right,” Riess said. “But now the ends are not quite meeting in the middle and we want to know why.”

    The Hubble observations were conducted by the Supernova H0 for the Equation of State (SH0ES) team, which works to refine the accuracy of the Hubble constant to a precision that allows for a better understanding of the universe’s behavior.

    Riess’ team made the improvements by streamlining and strengthening the construction of the cosmic distance ladder, which astronomers use to measure accurate distances to galaxies near and far from Earth. The team compared those distances with the expansion of space as measured by the stretching of light from receding galaxies. They used these two values to calculate the Hubble constant.

    Among the most reliable of these cosmic yardsticks for relatively shorter distances are Cepheid variables, pulsating stars that dim and fade at rates that correspond to their true brightness. Their distances, therefore, can be inferred by comparing their true brightness with their apparent brightness as seen from Earth.

    The researchers calibrated this stellar yardstick using a basic tool of geometry called parallax, the same technique that surveyors use to measure distances on Earth. With Hubble’s sharp-eyed Wide Field Camera 3 (WFC3), they extended the parallax measurements farther than previously possible, across the Milky Way galaxy, to reach distant Cepheids.

    To calculate accurate distances to nearby galaxies, the team looked for galaxies containing both Cepheid stars and another reliable yardstick, Type Ia supernovae, exploding stars that flare with the same brightness and are brilliant enough to be seen from relatively longer distances. So far, Riess’ team has measured about 2,400 Cepheid stars in 19 of these galaxies, representing the largest sample of such measurements outside the Milky Way. By comparing the observed brightness of both types of stars in those nearby galaxies, the astronomers could then accurately measure their true brightness and therefore calculate distances to roughly 300 Type Ia supernovae in far-flung galaxies.

    Using one instrument, WFC3, to bridge the Cepheid rungs in the distance ladder, the researchers eliminated the systematic errors that are almost unavoidably introduced by comparing measurements from different telescopes. Measuring the Hubble constant with a single instrument is like measuring a hallway with a long tape measure instead of a single 12-inch ruler. By avoiding the need to pick up the ruler and lay it back down over and over again, you can prevent cumulative errors.

    The SH0ES Team is still using Hubble to reduce the uncertainty in the Hubble constant even more, with a goal to reach an accuracy of 1 percent. Current telescopes such as the European Space Agency’s Gaia satellite, and future telescopes such as the James Webb Space Telescope (JWST), an infrared observatory, and the Wide Field Infrared Space Telescope (WFIRST), also could help astronomers make better measurements of the expansion rate.

    ESA/Gaia satellite
    ESA/Gaia satellite

    NASA/ESA/CSA Webb Telescope annotated
    NASA/ESA/CSA Webb Telescope annotated

    NASA/WFIRST telescope
    NASA/WFIRST telescope

    Before Hubble was launched in 1990, the estimates of the Hubble constant varied by a factor of two. In the late 1990s the Hubble Space Telescope Key Project on the Extragalactic Distance Scale refined the value of the Hubble constant to within an error of only 10 percent, accomplishing one of the telescope’s key goals. The SH0ES team has reduced the uncertainty in the Hubble constant value by 76 percent since beginning its quest in 2005.

    *Science paper:
    A 2.4% Determination of the Local Value of the Hubble Constant

    See the full NASA article here .
    See the full ESA article here .
    See the Keck Observatory article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 12:53 pm on May 30, 2016 Permalink | Reply
    Tags: , , , , Nebulae by Hubble   

    From Ethan Siegel: “The Double Jet Death Of Sun-Like Stars” 

    From Ethan Siegel

    May 30, 2016

    1
    Planetary Nebula M2-9, from the Hubble Space Telescope. Image credit: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA/ESA.

    When stars like our Sun, between 40% and ~800% of our mass, run out of hydrogen in their core, they start to die.

    2
    The bipolar planetary nebula PN Hb 12, the late stages of a dying Sun-like star. Image credit: NASA, ESA; Acknowledgement: Josh Barrington.

    The core contracts and heats up, causing the outer layers to expand as the star becomes a helium-burning red giant.

    3
    The Egg Nebula, a proto-planetary nebula in the early stages of formation. Image credit: NASA / Hubble.

    The intense stellar winds produced gently blow off the star’s outer layers.

    4
    The red rectangle nebula. Image credit: ESA / Hubble & NASA.

    When the core runs out of helium to burn, the central region contracts to a white dwarf, producing intense ultraviolet light.

    5
    The Southern Crab Nebula (He2-104) in its entirety, as observed by the Hubble Space Telescope. Image credit: ESA / Hubble and NASA, STScI.

    This light ionizes the atoms that had previously been blown off. As the electrons recombine with their ions, they emit light of various wavelengths.

    6
    Nitrogen, hydrogen and oxygen are highlighted in the planetary nebula above, known as the Hourglass Nebula for its distinctive shape. Image credit: NASA/HST/WFPC2 R Sahai and J Trauger (JPL).

    Hydrogen tends to glow red, while oxygen, sulphur, sodium, carbon and nitrogen cover the greens, blues and yellows when shown in true color.

    7
    The Ant Nebula, also known as Menzel 3. Image credit: NASA, ESA & the Hubble Heritage Team (STScI/AURA); Acknowledgment: R. Sahai (Jet Propulsion Lab), B. Balick (University of Washington).

    Some 80% of planetary nebulae are asymmetrical, with the vast majority of those showing a bipolar form.

    8
    The Rotten Egg Nebula. Image credit: NASA / Hubble.

    These twin jets emerge along the parent star’s rotational axis, where streams of material most likely flow outwards and collide with previously blown-off stellar layers.

    9
    Observations of active nebulae show that ~10 lunar masses worth of material are ejected each year, at speeds reaching 5% the speed of light.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 3:06 pm on May 24, 2016 Permalink | Reply
    Tags: , , , ,   

    From Hubble: “Hubble finds clues to the birth of supermassive black holes” 

    NASA Hubble Banner

    NASA Hubble Telescope

    Hubble

    24 May 2016
    At ESA/Hubble
    Fabio Pacucci
    Scuola Normale Superiore
    Pisa, Italy
    Email: fabio.pacucci@sns.it

    Andrea Ferrara
    Scuola Normale Superiore
    Pisa, Italy
    Email: andrea.ferrara@sns.it

    Andrea Grazian
    National Institute for Astrophysics
    Rome, Italy
    Email: grazian@oa-roma.inaf.it

    Mathias Jäger
    ESA/Hubble, Public Information Officer
    Garching bei München, Germany
    Tel: +49 176 62397500
    Email: mjaeger@partner.eso.org

    At NASA/Chandra
    Media contacts:
    Felicia Chou / Sean Potter
    Headquarters, Washington
    202-358-0257 / 1536
    felicia.chou@nasa.gov / sean.potter@nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    1

    Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, Italian researchers have found the best evidence yet for the seeds that ultimately grow into these cosmic giants.

    For years astronomers have debated how the earliest generation of supermassive black holes formed very quickly, relatively speaking, after the Big Bang. Now, an Italian team has identified two objects in the early Universe that seem to be the origin of these early supermassive black holes. The two objects represent the most promising black hole seed candidates found so far [1].

    The group used computer models and applied a new analysis method to data from the NASA Chandra X-ray Observatory, the NASA/ESA Hubble Space Telescope, and the NASA Spitzer Space Telescope to find and identify the two objects. Both of these newly discovered black hole seed candidates are seen less than a billion years after the Big Bang and have an initial mass of about 100 000 times the Sun.

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    NASA/Spitzer Telescope
    NASA/Spitzer Telescope

    “Our discovery, if confirmed, would explain how these monster black holes were born,” said Fabio Pacucci, lead author of the study, of Scuola Normale Superiore in Pisa, Italy.

    This new result helps to explain why we see supermassive black holes less than one billion years after the Big Bang.

    There are two main theories to explain the formation of supermassive black holes in the early Universe. One assumes that the seeds grow out of black holes with a mass about ten to a hundred times greater than our Sun, as expected for the collapse of a massive star. The black hole seeds then grew through mergers with other small black holes and by pulling in gas from their surroundings. However, they would have to grow at an unusually high rate to reach the mass of supermassive black holes already discovered in the billion years young Universe.

    The new findings support another scenario where at least some very massive black hole seeds with 100 000 times the mass of the Sun formed directly when a massive cloud of gas collapses [2]. In this case the growth of the black holes would be jump started, and would proceed more quickly.

    “There is a lot of controversy over which path these black holes take,” said co-author Andrea Ferrara also of Scuola Normale Superiore. “Our work suggests we are converging on one answer, where black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate.”

    Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy explains: “Black hole seeds are extremely hard to find and confirming their detection is very difficult. However, we think our research has uncovered the two best candidates so far.”

    Even though both black hole seed candidates match the theoretical predictions, further observations are needed to confirm their true nature. To fully distinguish between the two formation theories, it will also be necessary to find more candidates.

    These results* will appear in the June 21st issue of the Monthly Notices of the Royal Astronomical Society and is available online. The authors of the paper are Fabio Pacucci (SNS, Italy), Andrea Ferrara (SNS), Andrea Grazian (INAF), Fabrizio Fiore (INAF), Emaneule Giallongo (INAF), and Simonetta Puccetti (ASI Science Data Center).

    The team plans to conduct follow-up observations in X-rays and in the infrared range to check whether the two objects have more of the properties expected for black hole seeds. Upcoming observatories, like the NASA/ESA/CSA James Webb Space Telescope and the European Extremely Large Telescope will certainly mark a breakthrough in this field, by detecting even smaller and more distant black holes.

    NASA/ESA/CSA Webb Telescope annotated
    NASA/ESA/CSA Webb Telescope annotated

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile
    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile

    Notes

    [1] Supermassive black holes contain millions or even billions of times the mass of the Sun. In the modern Universe they can be found in the centre of nearly all large galaxies, including the Milky Way.

    Sag A*  NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way
    Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

    The supermassive black hole in the centre of the Milky Way has a mass of four million solar masses. The two black hole seed candidates would also be the progenitors of two of the modern supermassive black holes.

    [2] Black hole seeds created through the collapse of a massive cloud of gas bypass any other intermediate phases such as the formation and subsequent destruction of a massive star.

    The team of scientists in this study consists of Fabio Pacucci (Scuola Normale Superiore, Italy), Andrea Ferrara (Scuola Normale Superiore, Italy), Andrea Grazian (INAF, Italy), Fabrizio Fiore (INAF, Italy), Emanuele Giallongo (INAF, Italy), Simonetta Puccetti (ASDC-ASI, Italy)

    NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington, D.C. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

    *Science paper:
    First Identification of Direct Collapse Black Hole Candidates in the Early Universe in CANDELS/GOODS-S

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 1:05 pm on May 12, 2016 Permalink | Reply
    Tags: , , Comet 252P/LINEAR,   

    From Hubble: “Hubble Catches Views of a Jet Rotating with Comet 252P/LINEAR” 

    NASA Hubble Banner

    NASA Hubble Telescope
    Hubble

    May 12, 2016

    For thousands of years, humans have recorded sightings of mysterious comets sweeping across the nighttime skies. These celestial wanderers, “snowballs” of dust and ice, are swift-moving visitors from the cold depths of space. Some of them periodically visit the inner solar system during their journeys around the sun.

    Astronomers using NASA’s Hubble Space Telescope captured images of Comet 252P/LINEAR just after it swept by Earth on March 21.

    1
    Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
    Release Date: May 12, 2016

    Data Description: The image was created from Hubble data from proposal 14103: J.-Y. Li and N. Samarasinha (Planetary Science Institute), M. Kelley (University of Maryland), M. Mutchler (STScI), and D. Farnocchia (Jet Propulsion Laboratory).
    Instrument: WFC3/UVIS
    Exposure Date(s): April 4, 2016

    The visit was one of the closest encounters between a comet and our planet. The comet traveled within 3.3 million miles of Earth, or about 14 times the distance between our planet and the moon. The images reveal a narrow, well-defined jet of dust ejected by the comet’s icy, fragile nucleus. These observations also represent the closest celestial object Hubble has observed, other than the moon. The comet will return to the inner solar system again in 2021.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 9:40 am on May 9, 2016 Permalink | Reply
    Tags: , , Hubble's Deep Field work,   

    From Ethan Siegel: “Hubble Unveils Deepest View Of The Universe Ever” 

    Starts with a Bang

    5.9.16
    Ethan Siegel

    NASA Hubble XDF image
    A portion of the XDF in full UV-vis-IR light, the deepest image ever obtained. Image credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI).

    To see farther out into the Universe than ever before, you must gather the greatest amount of light possible.

    NASA/ESA Hubble Telescope
    NASA/ESA Hubble Telescope

    The way to do that is:

    go to space,
    with the largest telescope you can,
    and observe a clear patch of sky for as long as you can.

    1
    The region selected for the original Hubble Deep Field image. Image credit: NASA.

    In 1995, Hubble imaged a dark region of space with few stars and no known galaxies 342 times over a ten day span.

    2

    We discovered ~3,000 galaxies, where none were known previously.

    3
    A small section of the original Hubble Deep Field, featuring hundreds of easily distinguishable galaxies. Image credit: R. Williams (STScI), the Hubble Deep Field Team and NASA.

    As Hubble’s cameras were improved and longer observing times were used, we saw even deeper than before.

    4
    2004′s Hubble Ultra Deep Field, where over 10,000 galaxies were discovered with a more advanced (WFC3) camera. Image credit: NASA, ESA, S. Beckwith and the HUDF Team (STScI), and B. Mobasher (STScI).

    2004′s Ultra-Deep Field revealed 10,000 galaxies, some from more than 10 billion years ago.

    5
    The Hubble eXtreme Deep Field (XDF), which revealed approximately 50% more galaxies-per-square-degree than the previous Ultra-Deep Field. Image credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team.

    Most recently, a portion of this was imaged for even longer periods of time, revealing 5,500 galaxies in a region just 1/32,000,000th of the sky, from as long as 13.2 billion years ago.

    6
    The full UV-visible-IR composite of the XDF; the greatest image ever released of the distant Universe. Image credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI).

    Imaged in ultraviolet, visible and near-infrared light, extrapolating this region to the entire sky indicates that the Universe contains over 170 billion galaxies.

    As the James Webb Space Telescope prepares for launch, we anticipate finding even greater numbers of galaxies at the greatest distances of all.

    NASA/ESA/CSA Webb Telescope annotated
    NASA/ESA/CSA Webb Telescope annotated

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 8:45 pm on April 29, 2016 Permalink | Reply
    Tags: , Galaxy UGC 477,   

    From Hubble: “Hubble Sees Galaxy Hiding in the Night Sky” 

    NASA Hubble Banner

    NASA Hubble Telescope

    Hubble

    April 29, 2016
    Text credit: European Space Agency
    Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

    1

    This striking NASA/ESA Hubble Space Telescope image captures the galaxy UGC 477, located just over 110 million light-years away in the constellation of Pisces (The Fish).

    UGC 477 is a low surface brightness (LSB) galaxy. First proposed in 1976 by Mike Disney, the existence of LSB galaxies was confirmed only in 1986 with the discovery of Malin 1. LSB galaxies like UGC 477 are more diffusely distributed than galaxies such as Andromeda and the Milky Way. With surface brightnesses up to 250 times fainter than the night sky, these galaxies can be incredibly difficult to detect.

    Most of the matter present in LSB galaxies is in the form of hydrogen gas, rather than stars. Unlike the bulges of normal spiral galaxies, the centers of LSB galaxies do not contain large numbers of stars. Astronomers suspect that this is because LSB galaxies are mainly found in regions devoid of other galaxies, and have therefore experienced fewer galactic interactions and mergers capable of triggering high rates of star formation.

    LSB galaxies such as UGC 477 instead appear to be dominated by dark matter, making them excellent objects to study to further our understanding of this elusive substance. However, due to an underrepresentation in galactic surveys — caused by their characteristic low brightness — their importance has only been realized relatively recently.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 3:09 pm on April 26, 2016 Permalink | Reply
    Tags: , , Hubble Discovers Moon Orbiting the Dwarf Planet Makemake,   

    From Hubble: “Hubble Discovers Moon Orbiting the Dwarf Planet Makemake” 

    NASA Hubble Banner

    NASA Hubble Telescope

    Hubble

    April 26, 2016
    Donna Weaver / Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493 / 410-338-4514
    dweaver@stsci.edu / villard@stsci.edu

    Alex Parker
    Southwest Research Institute, Boulder, Colorado
    360-599-5346
    alex.parker@swri.org

    Peering to the outskirts of our solar system, NASA’s Hubble Space Telescope has spotted a small, dark moon orbiting Makemake, the second brightest icy dwarf planet — after Pluto — in the Kuiper Belt.

    1
    Credit: NASA, ESA, A. Parker and M. Buie (Southwest Research Institute), W. Grundy (Lowell Observatory), and K. Noll (NASA GSFC)
    The HST data were taken from proposal 13668 PI: M. Buie (Southwest Research Institute), W. Grundy (Lowell Observatory), and K. Noll (NASA Goddard Space Flight Center). The science team comprises A. Parker and M. Buie (Southwest Research Institute), W. Grundy (Lowell Observatory), and K. Noll (NASA Goddard Space Flight Center).

    Kuiper Belt. Minor Planet Center
    Kuiper Belt. Minor Planet Center

    The moon — provisionally designated S/2015 (136472) 1 and nicknamed MK 2 — is more than 1,300 times fainter than Makemake. MK 2 was seen approximately 13,000 miles from the dwarf planet, and its diameter is estimated to be 100 miles across. Makemake is 870 miles wide. The dwarf planet, discovered in 2005, is named for a creation deity of the Rapa Nui people of Easter Island.

    The Kuiper Belt is a vast reservoir of leftover frozen material from the construction of our solar system 4.5 billion years ago and home to several dwarf planets. Some of these worlds have known satellites, but this is the first discovery of a companion object to Makemake. Makemake is one of five dwarf planets recognized by the International Astronomical Union.

    The observations were made in April 2015 with Hubble’s Wide Field Camera 3 [WFC3]. Hubble’s unique ability to see faint objects near bright ones, together with its sharp resolution, allowed astronomers to pluck out the moon from Makemake’s glare. The discovery was announced today in a Minor Planet Electronic Circular.

    NASA/Hubble WFC3
    NASA/Hubble WFC3

    The observing team used the same Hubble technique to observe the moon as they did for finding the small satellites of Pluto in 2005, 2011, and 2012. Several previous searches around Makemake had turned up empty. “Our preliminary estimates show that the moon’s orbit seems to be edge-on, and that means that often when you look at the system you are going to miss the moon because it gets lost in the bright glare of Makemake,” said Alex Parker of the Southwest Research Institute, Boulder, Colorado, who led the image analysis for the observations.

    A moon’s discovery can provide valuable information on the dwarf-planet system. By measuring the moon’s orbit, astronomers can calculate a mass for the system and gain insight into its evolution.

    Uncovering the moon also reinforces the idea that most dwarf planets have satellites.

    “Makemake is in the class of rare Pluto-like objects, so finding a companion is important,” Parker said. “The discovery of this moon has given us an opportunity to study Makemake in far greater detail than we ever would have been able to without the companion.”

    Finding this moon only increases the parallels between Pluto and Makemake. Both objects are already known to be covered in frozen methane. As was done with Pluto, further study of the satellite will easily reveal the density of Makemake, a key result that will indicate if the bulk compositions of Pluto and Makemake are also similar. “This new discovery opens a new chapter in comparative planetology in the outer solar system,” said team leader Marc Buie of the Southwest Research Institute, Boulder, Colorado.

    The researchers will need more Hubble observations to make accurate measurements to determine if the moon’s orbit is elliptical or circular. Preliminary estimates indicate that if the moon is in a circular orbit, it completes a circuit around Makemake in 12 days or longer.

    Determining the shape of the moon’s orbit will help settle the question of its origin. A tight circular orbit means that MK 2 is probably the product of a collision between Makemake and another Kuiper Belt Object. If the moon is in a wide, elongated orbit, it is more likely to be a captured object from the Kuiper Belt. Either event would have likely occurred several billion years ago, when the solar system was young.

    The discovery may have solved one mystery about Makemake. Previous infrared studies of the dwarf planet revealed that while Makemake’s surface is almost entirely bright and very cold, some areas appear warmer than other areas. Astronomers had suggested that this discrepancy may be due to the sun warming discrete dark patches on Makemake’s surface. However, unless Makemake is in a special orientation, these dark patches should make the dwarf planet’s brightness vary substantially as it rotates. But this amount of variability has never been observed.

    These previous infrared data did not have sufficient resolution to separate Makemake from MK 2. The team’s reanalysis, based on the new Hubble observations, suggests that much of the warmer surface detected previously in infrared light may, in reality, simply have been the dark surface of the companion MK 2.

    There are several possibilities that could explain why the moon would have charcoal-black surface, even though it is orbiting a dwarf planet that is as bright as fresh snow. One idea is that, unlike larger objects such as Makemake, MK 2 is small enough that it cannot gravitationally hold onto a bright, icy crust, which sublimates, changing from solid to gas, under sunlight. This would make the moon similar to comets and other Kuiper Belt Objects, many of which are covered with very dark material.

    When Pluto’s moon Charon was discovered in 1978, astronomers quickly calculated the mass of the system. Pluto’s mass was hundreds of times smaller than the mass originally estimated when it was found in 1930. With Charon’s discovery, astronomers suddenly knew something was fundamentally different about Pluto. “That’s the kind of transformative measurement that having a satellite can enable,” Parker said.

    Science paper:
    DISCOVERY OF A MAKEMAKEAN MOON

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 1:42 pm on April 24, 2016 Permalink | Reply
    Tags: , , Hubble captures birthday bubble,   

    From Hubble: “Hubble captures birthday bubble” 

    NASA Hubble Banner

    NASA Hubble Telescope
    Hubble

    21 April 2016
    Mathias Jäger
    ESA/Hubble, Public Information Officer
    Garching bei München, Germany
    Tel: +49 176 62397500
    Email: mjaeger@partner.eso.org

    1

    2
    This ground-based image shows the Bubble Nebula and its surroundings, including the interstellar cloud which is illuminated by stellar winds from the central star within the Bubble Nebula. Credit: NASA, ESA, Digitized Sky Survey 2


    Access mp4 video here .


    Access mp4 video here .

    This new NASA/ESA Hubble Space Telescope image, released to celebrate Hubble’s 26th year in orbit, captures in stunning clarity what looks like a gigantic cosmic soap bubble. The object, known as the Bubble Nebula, is in fact a cloud of gas and dust illuminated by the brilliant star within it. The vivid new portrait of this dramatic scene wins the Bubble Nebula a place in the exclusive Hubble hall of fame, following an impressive lineage of Hubble anniversary images.

    Twenty six years ago, on 24 April 1990, the NASA/ESA Hubble Space Telescope was launched into orbit aboard the space shuttle Discovery as the first space telescope of its kind. Every year, to commemorate this momentous day in space history, Hubble spends a modest portion of its observing time capturing a spectacular view of a specially chosen astronomical object.

    This year’s anniversary object is the Bubble Nebula, also known as NGC 7635, which lies 8,000 light-years away in the constellation Cassiopeia. This object was first discovered by William Herschel in 1787 and this is not the first time it has caught Hubble’s eye. However, due to its very large size on the sky, previous Hubble images have only shown small sections of the nebula, providing a much less spectacular overall effect. Now, a mosaic of four images from Hubble’s Wide Field Camera 3 (WFC3) allows us to see the whole object in one picture for the first time.

    NASA/Hubble WFC3
    NASA/Hubble WFC3

    This complete view of the Bubble Nebula allows us to fully appreciate the almost perfectly symmetrical shell which gives the nebula its name. This shell is the result of a powerful flow of gas — known as a stellar wind — from the bright star visible just to the left of centre in this image. The star, SAO 20575, is between ten and twenty times the mass of the Sun and the pressure created by its stellar wind forces the surrounding interstellar material outwards into this bubble-like form.

    The giant molecular cloud that surrounds the star — glowing in the star’s intense ultraviolet radiation — tries to stop the expansion of the bubble. However, although the sphere already measures around ten light-years in diameter, it is still growing, owing to the constant pressure of the stellar wind — currently at more than 100 000 kilometres per hour!

    Aside from the symmetry of the bubble itself, one of the more striking features is that the star is not located at the centre. Astronomers are still discussing why this is the case and how the perfectly round bubble is created nonetheless.

    The star causing the spectacular colourful bubble is also notable for something less obvious. It is surrounded by a complex system of cometary knots, which can be seen most clearly in this image just to the right of the star. The individual knots, which are generally larger in size than the Solar System and have masses comparable to Earth’s, consist of crescent shaped globules of dust with large trailing tails illuminated and ionised by the star. Observations of these knots, and of the nebula as a whole, help astronomers to better understand the geometry and dynamics of these very complicated systems.

    As always, and twenty six years on, Hubble gives us much more than a pretty picture.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 8:20 pm on April 20, 2016 Permalink | Reply
    Tags: , , Disco lights from a galaxy cluster,   

    From Hubble: “Disco lights from a galaxy cluster” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    1

    In October of 2013 Hubble kicked off the Frontier Fields programme, a three-year series of observations aiming to produce the deepest ever views of the Universe. The project’s targets comprise six massive galaxy clusters, enormous collections of hundreds or even thousands of galaxies. These structures are the largest gravitationally-bound objects in the cosmos.

    One of the Frontier Fields targets is shown in this new image: MACS J0717.5+3745, or MACS J0717 for short. MACS J0717 is located about 5.4 billion light-years away from Earth, in the constellation of Auriga (The Charioteer). It is one of the most complex galaxy clusters known; rather than being a single cluster, it is actually the result of four galaxy clusters colliding.

    This image is a combination of observations from the NASA/ESA Hubble Space Telescope (showing the galaxies and stars), the NASA Chandra X-ray Observatory (diffuse emission in blue), and the NRAO Jansky Very Large Array (diffuse emission in pink). The Hubble data were collected as part of the Frontier Fields programme mentioned above.

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    NRAO/VLA
    NRAO/VLA

    Together, the three datasets produce a unique new view of MACS J0717. The Hubble data reveal galaxies both within the cluster and far behind it, and the Chandra observations show bright pockets of scorching gas — heated to millions of degrees. The data collected by the Jansky Very Large Array trace the radio emission within the cluster, enormous shock waves — similar to sonic booms — that were triggered by the violent merger.

    For more information on Frontier Fields, see Hubblecast 90: The final frontier.


    Access mp4 video here .

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: