From The National Science Foundation/ National Optical Astronomy Observatory NOIRLab (National Optical-Infrared Astronomy Research Laboratory) : “SOAR Telescope Catches Dimorphos’s Expanding Comet-like Tail After DART Impact”

From The National Science Foundation/ National Optical Astronomy Observatory NOIRLab (National Optical-Infrared Astronomy Research Laboratory)

10.3.22
Charles Blue
Public Information Officer
NSF’s NOIRLab
Tel: +1 202 236 6324
Email: charles.blue@noirlab.edu

1
The SOAR Telescope in Chile [below], operated by NSF’s NOIRLab, imaged the more than 10,000 kilometers long trail of debris blasted from the surface of Dimorphos two days after the asteroid was impacted by NASA’s DART spacecraft.

NASA’s Double Asteroid Redirection Test (DART) spacecraft intentionally crashed into Dimorphos, the asteroid moonlet in the double-asteroid system of Didymos, on Monday 26 September 2022.

This was the first planetary defense test in which an impact of a spacecraft attempted to modify the orbit of an asteroid.

Two days after DART’s impact, astronomers Teddy Kareta (Lowell Observatory) and Matthew Knight (US Naval Academy) used the 4.1-meter Southern Astrophysical Research (SOAR) Telescope [1], at NSF’s NOIRLab’s Cerro Tololo Inter-American Observatory in Chile, to capture the vast plume of dust and debris blasted from the asteroid’s surface. In this new image, the dust trail — the ejecta that has been pushed away by the Sun’s radiation pressure, not unlike the tail of a comet — can be seen stretching from the center to the right-hand edge of the field of view, which at SOAR is about 3.1 arcminutes using the Goodman High Throughput Spectrograph. At Didymos’s distance from Earth at the time of the observation, that would equate to at least 10,000 kilometers (6000 miles) from the point of impact.

“It is amazing how clearly we were able to capture the structure and extent of the aftermath in the days following the impact,” said Kareta.

“Now begins the next phase of work for the DART team as they analyze their data and observations by our team and other observers around the world who shared in studying this exciting event,” said Knight. We plan to use SOAR to monitor the ejecta in the coming weeks and months. The combination of SOAR and AEON [2] is just what we need for efficient follow-up of evolving events like this one.”

These observations will allow scientists to gain knowledge about the nature of the surface of Dimorphos, how much material was ejected by the collision, how fast it was ejected, and the distribution of particle sizes in the expanding dust cloud — for example, whether the impact caused the moonlet to throw off big chunks of material or mostly fine dust. Analyzing this information will help scientists protect Earth and its inhabitants by better understanding the amount and nature of the ejecta resulting from an impact, and how that might modify an asteroid’s orbit.

SOAR’s observations demonstrate the capabilities of NSF-funded AURA facilities in planetary-defense planning and initiatives. In the future, Vera C. Rubin Observatory, funded by NSF and the US Department of Energy and currently under construction in Chile, will conduct a census of the Solar System to search for potentially hazardous objects.

Didymos was discovered in 1996 with the UArizona 0.9-meter Spacewatch Telescope located at Kitt Peak National Observatory, a Program of NSF’s NOIRLab.
Notes

[1] SOAR is designed to produce the best quality images of any observatory in its class. Located on Cerro Pachón, SOAR is a joint project of the Ministério da Ciência, Tecnologia e Inovações do Brasil (MCTI/LNA), NSF’s NOIRLab, the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

[2] The Astronomical Event Observatory Network (AEON) is a facility ecosystem for accessible and efficient follow up of astronomical transients and Time Domain science. At the heart of the network, NOIRLab, with its SOAR 4.1-meter and Gemini 8-meter telescopes (and soon the Víctor M. Blanco 4-meter Telescope at CTIO), has joined forces with Las Cumbres Observatory to build such a network for the era of Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST). SOAR is the pathfinder facility for incorporating the 4-meter-class and 8-meter-class telescopes into AEON.

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

What is NOIRLab?

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of National Science Foundation, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and Korea Astronomy and Space Science Institute [한국천문연구원] (KR)), NOAO Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory(CL) (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (in cooperation with DOE’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Mauna Kea in Hawaiʻi, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

National Science Foundation NOIRLab’s Gemini North Frederick C Gillett telescope at Mauna Kea Observatory in Hawai’i Altitude 4,213 m (13,822 ft).

The National Science Foundation NOIRLab National Optical Astronomy Observatory Gemini South telescope on the summit of Cerro Pachón at an altitude of 7200 feet. There are currently two telescopes commissioned on Cerro Pachón, Gemini South and the SOAR Telescope — Southern Astrophysics Research Telescope. A third, the Vera C. Rubin Observatory, is under construction.

The National Science Foundation NOIRLab National Optical Astronomy Observatory Vera C. Rubin Observatory [LSST] Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing NSF NOIRLab NOAO The Association of Universities for Research in Astronomy (AURA) Gemini South Telescope and Southern Astrophysical Research Telescope.

Carnegie Institution for Science’s Las Campanas Observatory on Cerro Pachón in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena, near the southern end and over 2,500 m (8,200 ft) high.

National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft), annotated.

NSF NOIRLab NOAO Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

The NOAO-Community Science and Data Center

This work is supported in part by The Department of Energy Office of Science. The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Funding for the DES Projects has been provided by the US Department of Energy Office of Science, The National Science Foundation, Ministry of Science and Education of Spain, The Science and Technology Facilities Council (UK), The Higher Education Funding Council for England (UK), The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH), The National Center for Supercomputing Applications at The University of Illinois at Urbana-Champaign, The Kavli Institute of Cosmological Physics at The University of Chicago, Center for Cosmology and AstroParticle Physics at The Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at The Texas A&M University, Brazil Funding Authority for Studies and Projects for Scientific and Technological Development [Financiadora de Estudos e Projetos ](BR) , Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro [Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro](BR), Ministry of Science, Technology, Innovation and Communications [Ministério da Ciência, Tecnolgia, Inovação e Comunicações](BR), German Research Foundation [Deutsche Forschungsgemeinschaft](DE), and the collaborating institutions in the Dark Energy Survey.

The National Center for Supercomputing Applications at The University of Illinois at Urbana-Champaign provides
supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, The University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one-third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

DOE’s Fermi National Accelerator Laboratory is America’s premier national laboratory for particle physics and accelerator research. A Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between The University of Chicago and The Universities Research Association, Inc.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.