From The Department of Earth Sciences The University of Cambridge (UK): “Seawater could have provided phosphorous required for emerging life”

1

From The Department of Earth Sciences

at

U Cambridge bloc

The University of Cambridge (UK)

9.27.22
Erin Martin-Jones
cmm201@cam.ac.uk

1
Artist Concept of an Early Earth. Credit: NASA.

The problem of how phosphorus became a universal ingredient for life on Earth may have been solved by researchers from the University of Cambridge and the University of Cape Town, who have recreated primordial seawater containing the element in the lab.

Their results, published in the journal Nature Communications [below], show that seawater might be the missing source of phosphate, meaning that it could have been available on a large enough scale for life without requiring special environmental conditions.

“This could really change how we think about the environments in which life first originated,” said co-author Professor Nick Tosca from Cambridge’s Department of Earth Sciences.

The study, which was led by Matthew Brady, a PhD student from Cambridge’s Department of Earth Sciences, shows that early seawater could have held one thousand to ten thousand times more phosphate than previously estimated — as long as the water contained a lot of iron.

Phosphate is an essential ingredient in creating life’s building blocks — forming a key component of DNA and RNA — but it is one of the least abundant elements in the cosmos in relation to its biological importance. When in its mineral form, phosphate is also relatively inaccessible — it can be hard to dissolve in water so that life can use it.

Scientists have long suspected that phosphorus became part of biology early on, but they have only recently begun to recognize the role of phosphate in directing the synthesis of molecules required by life on Earth. “Experiments show it makes amazing things happen – chemists can synthesize crucial biomolecules if there is a lot of phosphate in solution,” said Tosca.

But the exact environment needed to produce phosphate has been a topic of discussion. Some studies have suggested that when iron is abundant then phosphate should actually be even less accessible to life. This is, however, controversial because early Earth would have had an oxygen-poor atmosphere where iron would have been widespread.

To understand how life came to depend on phosphate, and the sort of environment that this element would have formed in, they carried out geochemical modelling to recreate early conditions on Earth.

“It’s exciting to see how simple experiments in a bottle can overturn our thinking about the conditions that were present on the early Earth,” said Brady.

In the lab, they made up seawater with the same chemistry thought to have existed in Earth’s early history. They also ran their experiments in an atmosphere starved of oxygen, just like on ancient Earth.

The team’s results suggest that seawater itself could have been a major source of this essential element.

“This doesn’t necessarily mean that life on Earth started in seawater,” said Tosca, “It opens up a lot of possibilities for how seawater could have supplied phosphate to different environments— for instance, lakes, lagoons, or shorelines where sea spray could have carried the phosphate onto land.”

Previously scientists had come up with a range of ways of generating phosphate, some theories involving special environments such as acidic volcanic springs or alkaline lakes, and rare minerals found only in meteorites.

“We had a hunch that iron was key to phosphate solubility, but there just wasn’t enough data,” said Tosca. The idea for the team’s experiments came when they looked at waters that bathe sediments deposited in the modern Baltic Sea. “It is unusual because it’s high in both phosphate and iron — we started to wonder what was so different about those particular waters.”

In their experiments, the researchers added different amounts of iron to a range of synthetic seawater samples and tested how much phosphorous it could hold before crystals formed and minerals separated from the liquid. They then built these data points into a model that could predict how much phosphate ancient seawater could hold.

The Baltic Sea pore waters provided one set of modern samples they used to test their model. “We could reproduce that unusual water chemistry perfectly,” said Tosca. From there they went on to explore the chemistry of seawater before any biology was around.

The results also have implications for scientists trying to understand the possibilities for life beyond Earth. “If iron helps put more phosphate in solution, then this could have relevance to early Mars,” said Tosca.

Evidence for water on ancient Mars is abundant, including old river beds and flood deposits, and we also know that there was a lot of iron at the surface and the atmosphere was at times oxygen-poor, said Tosca.

Their simulations of surface waters filtering through rocks on the Martian surface suggest that iron-rich water might have supplied phosphates in this environment too.

“It’s going to be fascinating to see how the community uses our results to explore new, alternative pathways for the evolution of life on our planet and beyond,” said Brady.

Fig. 1: Solubility of vivianite at 25 oC.
2
Optimisation of new and existing solubility data in the aqueous iron phosphate system yields a value of 35.79 +/− 0.09 for the solubility product of vivianite (pKsp; solid line; dashed lines indicate 95% confidence intervals of entire dataset) for vivianite, as well as equilibrium constants for aqueous Fe-phosphate species (Supplementary Tables 1 and 2). This experimentally calibrated model represents, within reported error, all available experimental observations conducted at varying pH, ionic strength and media composition. Error bars indicate an analytical error (two standard deviations from the mean; refs. 20, 84 [in the full science paper]).

Fig. 2: Stoichiometric dissociation constants of phosphoric acid in seawater media as a function of salinity.
3
At 0 permil salinity, calculated stoichiometric dissociation constants are equivalent to the infinite dilution values listed in Supplementary Table 2. Error bars indicate an analytical error (two standard deviations from the mean; refs. 85,86,87 [in the full science paper).

Science paper:
Nature Communications

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

2

The Department of Earth Sciences offers world-leading education and carries out innovative and ground-breaking research, using excellent facilities in a dynamic, welcoming and inclusive environment.

U Cambridge Campus

The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford(UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organised into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organised around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

History

By the late 12th century the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

Foundation of the colleges

The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

Modern period

After the Cambridge University Act formalised the organisational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.