From “CSIROscope” (AU): “Changing gears: your guide to low emissions transport”

CSIRO bloc

From “CSIROscope” (AU)


CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization


Curious about decarbonizing your personal transport? Perhaps soaring fuel costs, new financial rebates and vehicle options has sparked your interest? Maybe it is your growing appetite for environmental action?

If so, you’re not alone. The Electric Vehicle Council found more than 50 per cent of Australians would consider an Electric Vehicle (EV) as their next car. In fact, sales have tripled in the last 12 months.

We’re unpacking the latest low emissions transport options. We’ll also touch on the challenges and critical research that is getting us on track for a cleaner transport future.

Our renewable-powered charging technology is just one of the ways our research is driving us towards net zero emissions.

Taking charge of low emissions transport

Transport is Australia’s third largest source of greenhouse gas emissions and increasing faster than any other sector. Cars account for roughly half of these emissions. Switching to an EV can have a huge impact on reducing your carbon footprint, even if charged from the grid (that mostly relies on fossil fuels for the time being).

Despite more EVs being introduced in Australia, supply constraints and high demand continues to limit model choice and availability.

Let’s explore types of EVs and how they compare to standard Internal Combustion Engine (ICE) cars.


Powered by an internal combustion and electric motor. Regenerative breaking and the ICE automatically recharge the battery.

Pros: Thrifty on fuel, lower emissions, strong resale value, self-charging battery
Cons: Higher purchase and maintenance costs, battery replacement is expensive, limited supply for some models

Plug-in hybrid electric vehicle (PHEV)

Offers the flexibility of using petrol or recharging the battery by plugging into the grid.

Pros: Better fuel efficiency than a standard hybrid as it uses the electric motor more frequently, low emissions, opportunity to recharge with renewable energy
Cons: Higher purchase cost, higher maintenance costs, limited model choice and availability

Battery Electric Vehicles (BEV)

Uses electrical energy stored in a rechargeable battery as its sole source of propulsion.

Pros: Low running and maintenance costs, fast charging capability, silent, extra front boot space (where engine usually sits), zero emissions driving if charged with renewable energy
Cons: Higher purchase cost, limited public charging infrastructure, reduced storage capacity in some models, it may require extra home charging investment, limited model choice and supply

There’s more to the EV scene than just cars

Registrations of electric motorbikes, scooters and mopeds have taken off in recent years. They offer an affordable, low emissions transport alternative. With limited range and low top speed, scooters and mopeds are suited to inner city commutes. In some states they only require a C-class driver license.

Switching to an electric vehicle is a great way to reduce your carbon footprint.

The rise of micromobility

Micromobility is the use of small, mostly electric powered vehicles for short urban trips. They have rapidly surged in popularity since the first Australian public trials in 2018.

E-bikes, e-scooters, electric unicycles and e-skateboards offer affordable, fun and convenient mobility. They offer the potential to reduce traffic congestion, pollution, emissions and gaps in public transport.

But our relationship with this emerging transport mode has been strained. Widespread concerns for rider and pedestrian safety, infrastructure challenges and conflicting regulation between states and territories are some of the barriers.

Beyond electric: Powering ahead with clean hydrogen

No harmful emissions, greater range and fast refuelling. It’s easy to see why some consider clean hydrogen a fuel of the future.

Hydrogen-powered vehicles use an internal fuel cell. The driver refuels at a hydrogen bowser in around five minutes, like a petrol or diesel car. However, there is little hydrogen refueling infrastructure in Australia.

Currently there is a limited range of hydrogen-powered vehicles in Australia, which are not yet available for private purchase. The development and deployment of hydrogen is better suited to heavy transport vehicles such as trucks and buses. This energy is compatible with large loads, long journeys and a central base for refueling.

Navigating roadblocks

The predicted surge in EV ownership from the late 2020s will be driven by improved affordability, model availability and charging facilities. But our ageing energy infrastructure (and phase-out of fossil fuel generation) will require more investment and distribution to cope with our complex energy habits.

We currently have just over 3000 EV public charging stations in Australia. There have been calls for us to step on the pedal in order to reach the estimated 2.8 million required by 2030.

EV resource production and manufacturing also present challenges. Each vehicle requires around 200 kilograms of critical minerals, such as cobalt, nickel and lithium. That’s six times more than a petrol car.

When EV batteries reach the end of their life, we need better strategies to recycle or repurpose them. While there are existing EV battery recycling programs in Australia, there’s more work to be done in this area.

En route to a sustainable future

Our research is actively empowering Australia’s transition to low emissions transport.

Our Revolutionary Energy Storage Systems Future Science Platform is developing radical new systems to meet future energy needs.

We are exploring solutions to improve grid reliability, capacity and sustainability, and we’ve introduced solar-powered EV charging stations. These stations will use smart technology to connect your solar, batteries and vehicle.

In 2021, we announced Australia’s first clean hydrogen refueling station to enable real-world testing. We also launched the Hydrogen Knowledge Centre as a resource to support the development of a clean and competitive hydrogen industry in Australia.

As Australia’s largest minerals research and development organization, we are well placed to respond to critical mineral demand. This includes developing more sustainable mining methods and circular economy approach for rare earth metals.

We have prepared a number of reports on the potential for lithium battery recycling in Australia. Our research is also exploring the best ways to use these valuable metals and keep batteries from landfill.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

CSIRO campus

CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

Research and focus areas

Research Business Units

As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

Agriculture and Food
Health and Biosecurity
Data 61
Land and Water
Mineral Resources
Oceans and Atmosphere

National Facilities

CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

Australian Animal Health Laboratory (AAHL)
Australia Telescope National Facility – radio telescopes in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: The National Aeronautics and Space Agency

CSIRO Canberra campus

ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia

CSIRO-Commonwealth Scientific and Industrial Research Organization (AU)CSIRO R/V Investigator.

UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

CSIRO Pawsey Supercomputing Centre AU)

Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia

Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia

Pausey Supercomputer CSIRO Zeus SGI Linux cluster

Others not shown


SKA- Square Kilometer Array

Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.