From The Rochester Institute of Technology: “Scientists find the social cost of carbon is more than triple the current federal estimate”

From The Rochester Institute of Technology

9.1.22
Luke Auburn
luke.auburn@rit.edu

Assistant Professor Tony Wong leads RIT’s contributions to multi-year ‘Nature’ study.

1
A multi-institutional team including RIT Assistant Professor Tony Wong released an updated social cost of carbon estimate that finds that each additional metric ton of carbon dioxide emitted into the atmosphere costs society $185 per metric ton–3.6 times the current U.S. federal estimate of $51 per metric ton. Credit: Jorge Royan.

After years of robust modeling and analysis, a multi-institutional team including researchers from Rochester Institute of Technology has released an updated social cost of carbon estimate that reflects new methodologies and key scientific advancements. The study, published in the journal Nature [below], finds that each additional metric ton of carbon dioxide emitted into the atmosphere costs society $185 per metric ton—3.6 times the current U.S. federal estimate of $51 per metric ton.

The social cost of carbon is a critical metric that measures the economic damages, in dollars, that result from the emission of one additional metric ton of carbon dioxide into the atmosphere. A high social cost of carbon can motivate more stringent climate policies, as it increases the estimated benefits of reducing greenhouse gases.

“The key takeaway here is that we are dramatically underestimating the harm that greenhouse gas emissions are causing the planet,” said Tony Wong, an assistant professor in RIT’s School of Mathematical Sciences who led RIT’s contributions to the study. “This has broad implications around the world today, as well as for future generations. What we’re seeing is that greenhouse gas mitigation efforts are more than three times as valuable as we previously thought. That’s huge.”

The study, led by scientists at University of California-Berkeley and Resources for the Future (RFF), brought together leading researchers from institutions across the United States to develop important updates to social cost of carbon modeling. Wong and applied statistics student Hannah Sheets contributed to the study through sea-level modeling and estimating damages from coastal hazards.

Other advances include consideration of the probability of different socioeconomic and emissions trajectories far into the future; the incorporation of a modern representation of the climate system; and state-of-the-science methodologies for assessing the effects of climate change on agriculture, temperature-related deaths, and energy expenditures. The estimate also takes into account an updated approach to evaluating future climate risks through ‘discounting’ that is linked to future economic uncertainty.

Aside from the estimate itself, a major output of the study is the Greenhouse Gas Impact Value Estimator (GIVE) model, which provides a transparent and accessible way for interested parties to view and build upon the data. The scientists also released a new data tool, the Social Cost of Carbon Explorer, which demonstrates the working mechanics of the GIVE model and allows users to develop their own social cost of carbon estimates.

Science paper:
Nature

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Rochester Institute of Technology is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

The Rochester Institute of Technology is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute. It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

The Rochester Institute of Technology was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. The Rochester Institute of Technology is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

The Rochester Institute of Technology’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

Fourteen Rochester Institute of Technology alumni and faculty members have been recipients of the Pulitzer Prize.

History

The Rochester Institute of Technology began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated the former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

The Rochester Institute of Technology originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, The Rochester Institute of Technology began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom The Rochester Institute of Technology’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 The Rochester Institute of Technology moved to the new suburban campus, where it resides today.

In 1966 The Rochester Institute of Technology was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

In 1979 The Rochester Institute of Technology took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open Rochester Institute of Technology announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

In 1990 The Rochester Institute of Technology started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. The Rochester Institute of Technology subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 The Rochester Institute of Technology became the first college in the U.S. to offer a Software Engineering degree at the undergraduate level.

Colleges

The Rochester Institute of Technology has nine colleges:

The Rochester Institute of Technology College of Engineering Technology
Saunders College of Business
B. Thomas Golisano College of Computing and Information Sciences
Kate Gleason College of Engineering
The Rochester Institute of Technology College of Health Sciences and Technology
College of Art and Design
The Rochester Institute of Technology College of Liberal Arts
The Rochester Institute of Technology College of Science
National Technical Institute for the Deaf

There are also three smaller academic units that grant degrees but do not have full college faculties:

The Rochester Institute of Technology Center for Multidisciplinary Studies
Golisano Institute for Sustainability
University Studies

In addition to these colleges, The Rochester Institute of Technology operates three branch campuses in Europe, one in the Middle East and one in East Asia:

The Rochester Institute of Technology Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
The Rochester Institute of Technology Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
The Rochester Institute of Technology Dubai in Dubai, United Arab Emirates
The Rochester Institute of Technology China-Weihai Campus

The Rochester Institute of Technology also has international partnerships with the following schools:

Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
Mother and Teacher Pontifical Catholic University [Pontificia Universidad Católica Madre y Maestra] (DO)
Santo Domingo Institute of Technology [Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
Central American Technological University [La universidad global de Honduras] (HN)
University of the North [Universidad del Norte] (COL)in Colombia
Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
Research

The Rochester Institute of Technology’s research programs are rapidly expanding. The total value of research grants to The Rochester Institute of Technology faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The Rochester Institute of Technology currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

The Center for Microelectronic and Computer Engineering was founded by The Rochester Institute of Technology in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

The Center for Advancing the Study of Cyber Infrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. The Rochester Institute of Technology was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a computer science Bachelor’s program in 1972. The Rochester Institute of Technology helped standardize the Forth programming language and developed the CLAWS software package.

The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and New Horizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

2
Gravity Simulator at the Center for Computational Relativity and Gravitation, The Rochester Institute of Technology, Rochester, New York.

The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

The Rochester Institute of Technology has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency; and the Defense Advanced Research Projects Agency (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that The Rochester Institute of Technology will lead the SUNY University at Buffalo and Alfred University in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboration is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboration, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

The Rochester Institute of Technology has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected The Rochester Institute of Technology to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. The Rochester Institute of Technology also participates in five other Manufacturing USA research institutes.