From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU): “The Sun as you’ve never seen it before”

ESA Space For Europe Banner

European Space Agency – United Space in Europe (EU)

From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU)

18/05/2022

Solar Orbiter’s highest resolution image ever of the Sun’s south pole.


5.18.22
The Sun’s south pole as seen by the ESA/NASA Solar Orbiter spacecraft on 30 March 2022, just four days after the spacecraft passed its closest point yet to the Sun.

These images were recorded by the Extreme Ultraviolet Imager (EUI) at a wavelength of 17 nanometers.


Extreme Ultraviolet Imager (EUI)

Many scientific secrets are thought to lie hidden at the solar poles. The magnetic fields that create the great but temporary active regions on the Sun get swept up to the poles before being swallowed back down into the Sun where they are thought to form the magnetic seeds for future solar activity.

The lighter areas of the image are mostly created by loops of magnetism that rise upwards from the solar interior. These are called closed magnetic field lines because particles find it hard to cross them, and become trapped, emitting the extreme ultraviolet radiation that EUI is specially designed to record.

The darker areas are regions where the Sun’s magnetic field lies open, and so the gasses can escape into space, creating the solar wind.

Starting in 2025, Solar Orbiter will use the gravitational pull of Venus to gradually crank up the inclination of its orbit. This will allow the spacecraft’s instruments to investigate the solar poles from a more top-down viewpoint.

The colour on this image has been artificially added because the original wavelength detected by the instrument is invisible to the human eye. © ESA & NASA/Solar Orbiter/EUI Team

_____________________________________________

Powerful flares, breathtaking views across the solar poles, and a curious solar ‘hedgehog’ are amongst the haul of spectacular images, movies and data returned by Solar Orbiter from its first close approach to the Sun. Although the analysis of the new dataset has only just started, it is already clear that the ESA-led mission is providing the most extraordinary insights into the Sun’s magnetic behaviour and the way this shapes space weather.

Solar Orbiter’s closest approach to the Sun, known as perihelion, took place on 26 March. The spacecraft was inside the orbit of Mercury, at about one-third the distance from the Sun to the Earth, and its heatshield was reaching around 500°C. But it dissipated that heat with its innovative technology to keep the spacecraft safe and functioning.
_____________________________________________


5.18.22
The ESA/NASA Solar Orbiter spacecraft made the first of its close perihelion passages on 26 March 2022. The spacecraft flew closer to the Sun than the inner planet Mercury, achieving its closest approach at just 32 percent of the Earth’s distance from the Sun. Being that close to the Sun, the images and data returned were spectacular.

The movie first shows the full Sun, with magnetism reaching out from the Sun’s interior to trap bright loops of coronal gas. Next, the movie zooms in towards the region targeted by the HRIEUV telescope, where smaller scale coronal loops can be seen.

The colour on this image has been artificially added because the original wavelength detected by the instrument is invisible to the human eye. © ESA & NASA/Solar Orbiter/EUI Team.

Solar Orbiter carries ten science instruments – nine are led by ESA Member States and one by NASA – all working together in close collaboration to provide unprecedented insight into how our local star ‘works’. Some are remote-sensing instruments that look at the Sun, while others are in-situ instruments that monitor the conditions around the spacecraft, enabling scientists to ‘join the dots’ from what they see happening at the Sun, to what Solar Orbiter ‘feels’ at its location in the solar wind millions of kilometres away.

When it comes to perihelion, clearly the closer the spacecraft gets to the Sun, the finer the details the remote sensing instrument can see. And as luck would have it, the spacecraft also soaked up several solar flares and even an Earth-directed coronal mass ejection, providing a taste of real-time space weather forecasting, an endeavour that is becoming increasingly important because of the threat space weather poses to technology and astronauts.

_____________________________________________

Introducing the solar hedgehog

“The images are really breathtaking,” says David Berghmans, Royal Observatory of Belgium, and the Principal Investigator (PI) of the Extreme Ultraviolet Imager (EUI) instrument, which takes high-resolution images of the lower layers of the Sun’s atmosphere, known as the solar corona. This region is where most of the solar activity that drives space weather takes place.

The task now for the EUI team is to understand what they are seeing. This is no easy task because Solar Orbiter is revealing so much activity on the Sun at the small scale. Having spotted a feature or an event that they can’t immediately recognise, they must then dig through past solar observations by other space missions to see if anything similar has been seen before.

“Even if Solar Obiter stopped taking data tomorrow, I would be busy for years trying to figure all this stuff out,” says David Berghmans.

One particularly eye-catching feature was seen during this perihelion. For now, it has been nicknamed ‘the hedgehog’. It stretches 25 000 kilometres across the Sun and has a multitude of spikes of hot and colder gas that reach out in all directions.

Joining the dots

2
Joining the dots of an energetic particle event.

Solar Orbiter’s main science goal is to explore the connection between the Sun and the heliosphere. The heliosphere is the large ‘bubble’ of space that extends beyond the planets of our Solar System. It is filled with electrically charged particles, most of which have been expelled by the Sun to form the solar wind. It is the movement of these particles and the associated solar magnetic fields that create space weather.

To chart the Sun’s effects on the heliosphere, the results from the in-situ instruments, which record the particles and magnetic fields that sweep across the spacecraft, must be traced back to events on or near the visible surface of the Sun, which are recorded by the remote sensing instruments.

This is not an easy task as the magnetic environment around the Sun is highly complex, but the closer the spacecraft can get to the Sun, the less complicated it is to trace particle events back to the Sun along the ‘highways’ of magnetic field lines. The first perihelion was a key test of this, and the results so far look very promising.

On 21 March, a few days before perihelion, a cloud of energetic particles swept across the spacecraft. It was detected by the Energetic Particle Detector (EPD).

Tellingly, the most energetic of them arrived first, followed by those of lower and lower energies.

“This suggests that the particles are not produced close to the spacecraft,” says Javier Rodríguez-Pacheco, University of Alcalá, Spain, and EPD’s PI. Instead, they were produced in the solar atmosphere, nearer the Sun’s surface. While crossing space, the faster particles pulled ahead of the slower ones, like runners in a sprint.

On the same day, the Radio and Plasma Waves (RPW) experiment saw them coming, picking up the strong characteristic sweep of radio frequencies produced when accelerated particles – mostly electrons – spiral outwards along the Sun’s magnetic field lines. RPW then detected oscillations known as Langmuir waves. “These are a sign that the energetic electrons have arrived at the spacecraft,” says Milan Maksimovic, LESIA, Observatoire de Paris, France, and RPW PI.

Of the remote sensing instruments, both EUI and the X-ray Spectrometer/Telescope (STIX) saw events on the Sun that could have been responsible for the release of the particles. While the particles that stream outwards into space are the ones that EPD and RPW detected, it is important to remember that other particles can travel downwards from the event, striking the lower levels of the Sun’s atmosphere. This is where STIX comes in.


STIX

While EUI see the ultraviolet light released from the site of the flare in the atmosphere of the Sun, STIX see the X-rays that are produced when electrons accelerated by the flare interact with atomic nuclei in the lower levels of the Sun’s atmosphere.

Exactly how these observations are all linked is now a matter for the teams to investigate. There is some indication from the composition of the particles detected by EPD that they were likely accelerated by a coronal shock in a more gradual event rather than impulsively from a flare.

“It could be that you have multiple acceleration sites,” says Samuel Krucker, FHNW, Switzerland, and PI for STIX.

Adding another twist to this situation is that the Magnetometer instrument (MAG) did not register anything substantial at the time. However, this is not unusual. The initial eruption of particles, known as a Coronal Mass Ejection (CME), carries a strong magnetic field that MAG can easily register, but energetic particles from the event travel much faster than the CME and can rapidly fill large volumes of space, and therefore be detected by Solar Orbiter. “But if the CME misses the spacecraft, then MAG will not see a signature,” says Tim Horbury, Imperial College, UK, and MAG PI.

When it comes to the magnetic field, it all begins at the Sun’s visible surface, known as the photosphere. This is where the internally generated magnetic field bursts into space. To know what this looks like, Solar Orbiter carries the Polarimetric and Helioseismic Imager (PHI) instrument.


Polarimetric and Helioseismic Imager (PHI) instrument.

This can see the north and south magnetic polarity on the photosphere, as well as the rippling of the Sun’s surface due to seismic waves travelling through its interior.

“We provide the magnetic field measurements at the surface of the Sun. This field then expands, goes into the corona and basically drives all the sparkle and action you see up there,” says Sami Solanki, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, and the PI for PHI.

Another instrument, the Spectral Imaging of the Coronal Environment (SPICE), records the composition of the corona. These ‘abundance maps’ can be compared to the contents of the solar wind seen by the Solar Wind Analyser (SWA) instrument.

“This will track the evolution of the composition of the solar wind from the Sun to the spacecraft, and that tells us about the mechanisms responsible for the acceleration of the solar wind,” says SPICE PI Frédéric Auchère, Institut d’Astrophysique Spatiale, France.

Forecasting space weather

3
Tracking space weather.

By combining data from all instruments, the science team will be able to tell the story of solar activity from the surface of the Sun, out to Solar Orbiter and beyond. And that knowledge is exactly what will pave the way for a future system designed to forecast the space weather conditions at Earth in real-time. In the lead-up to perihelion, Solar Orbiter even got a taste of how such a system might operate.

The spacecraft was flying upstream of the Earth. This unique perspective meant that it was monitoring the conditions of the solar wind that would hit Earth several hours later. Since the spacecraft was in direct contact with the Earth, with its signals travelling at the speed of light, the data arrived on the ground within a few minutes, ready for analysis. As luck would have it, there were several coronal mass ejections (CME) detected around this time, some of them heading directly for Earth.

On 10 March, a CME swept over the spacecraft. Using data from MAG, the team were able to predict when it would subsequently hit Earth. Announcing this news on social media allowed sky watchers to be ready for the aurora, which duly arrived around 18 hours later at the predicted time.

This experience gave Solar Orbiter a taste of what it is like to forecast the space weather condition at Earth in real-time. Such an endeavour is becoming increasingly important because of the threat space weather poses to technology and astronauts.

_____________________________________________
Awesome solar energy

5.18.22
The awesome energy of the Sun can be readily appreciated in this sequence of images combining data from three instruments on the ESA/NASA Solar Orbiter spacecraft. It shows the way a solar flare on 25 March 2022, one day before Solar Orbiter’s closest approach to the Sun, created a huge disturbance in the Sun’s outer atmosphere, the solar corona, leading to a huge quantity of the gas being hurled into space in a coronal mass ejection.

The first image was taken by the Extreme Ultraviolet Imager (EUI) instrument at a wavelength of 17 nanometres. The solar flare is shown by an arrow. The view then zooms out to show what the Metis instrument sees. Metis takes pictures of the corona from 1.7 to 3 solar radii by blotting out the Sun’s bright disc. The final zoom shows the huge coronal mass ejection blasting into space. The data comes from SoloHI, which records images made of sunlight scattered by the electrons in the solar wind. © ESA & NASA/Solar Orbiter/EUI, Metis and SoloHI Teams.
_____________________________________________

ESA is currently planning a mission called ESA Vigil that will be stationed to one side of the Sun looking into the region of space leading up to the Earth. Its job will be to image CMEs travelling through this region, especially those heading for our planet. During perihelion itself, Solar Orbiter was positioned so that its instruments Metis and SoloHI could provide exactly these kinds of images and data.

Metis takes pictures of the corona from 1.7–3 solar radii. By blotting out the Sun’s bright disc, it sees the fainter corona. “It gives the same details as ground based total eclipse observations, but instead of a few minutes, Metis can observe continuously,” says Marco Romoli, University of Florence, Italy, and PI for Metis.

SoloHI records images made of sunlight scattered by the electrons in the solar wind. One particular flare, on 31 March, made it into the X-class, the most energetic solar flares known. As yet, the data has not been analysed because much of it remains on the spacecraft waiting to be downloaded. Now that Solar Orbiter is further from the Earth, the data transfer rate has slowed and researchers must be patient – but they are more than ready to begin their analysis when it does arrive.

“We’re always interested in the big events because they produce the biggest responses and the most interesting physics because you are looking at the extremes,” says Robin Colaninno, U.S. Naval Research Laboratory, Washington DC, and SoloHI PI.

_____________________________________________
To the Sun and back


18/05/2022

This sequence of images shows the progress of the ESA/NASA Solar Orbiter spacecraft as it heads inwards towards the Sun and through its closest approach on 26 March 2022. The sequence begins on 30 January and completes on 4 April, by which time the spacecraft is moving away from the Sun again.

The sequence was taken by the Extreme Ultraviolet Imager (EUI) using the Full Sun Imager (FSI) telescope, and shows the Sun at a wavelength of 30 nanometers. This wavelength is emitted by a form of helium gas that is found mainly in a region of the Sun’s atmosphere called the transition region. This is the interface between the lower and upper layers of the solar atmosphere. It is only 100 km in height, yet the temperature here increases by a factor of 50 to reach the one million degrees displayed by the corona. Solar Orbiter is investigating why there is this huge increase.

The colour on this image has been artificially added because the original wavelength detected by the instrument is invisible to the human eye. Occasionally the image appears to jump. This happens on the days that EUI was not returning data to Earth. The coloured bar at the top of the image shows the impressive amount of data collected in this period, together with these brief gaps in the data coverage. © ESA & NASA/Solar Orbiter/EUI Team.
_____________________________________________

Coming soon

There is no doubt that the instrument teams now have their work cut out. The perihelion was a huge success and has generated a vast quality of extraordinary data. And it’s just a taste of what is to come. Already the spacecraft is racing through space to line itself up for its next – and slightly closer – perihelion pass on 13 October at 0.29 times the Earth-Sun distance. Before then, on 4 September, it will make its third flyby of Venus.

Solar Orbiter has already taken its first pictures of the Sun’s largely unexplored polar regions but much more is still to come.

On 18 February 2025, Solar Orbiter will encounter Venus for a fourth time. This is increase the inclination of the spacecraft’s orbit to around 17 degrees. The fifth Venus flyby on 24 December 2026 will increase this still further to 24 degrees, and will mark the start of the ‘high-latitude’ mission.

In this phase, Solar Orbiter will see the Sun’s polar regions more directly than ever before. Such line-of-sight observations are key to disentangling the complex magnetic environment at the poles, which may in turn hold the secret to the Sun’s 11-year cycle of waxing and waning activity.

“We are so thrilled with the quality of the data from our first perihelion,” says Daniel Müller, ESA Project Scientist for Solar Orbiter. “It’s almost hard to believe that this is just the start of the mission. We are going to be very busy indeed.”

See the full article here .


five-ways-keep-your-child-safe-school-shootings


Please help promote STEM in your local schools.

Stem Education Coalition

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the
European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with NASA to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

The agency’s facilities are distributed among the following centres:

ESA European Space Research and Technology Centre (ESTEC) (NL) in Noordwijk, Netherlands;
ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

Foundation

After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization), and the other the precursor of the European Space Agency, ESRO (European Space Research Organisation). The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

ESA50 Logo large

Later activities

ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years.

ESA Infrared Space Observatory.

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration Solar Orbiter annotated.

A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

ESA/Huygens Probe from Cassini landed on Titan.

As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organisation, the Canadian Space Agency(CA) and Roscosmos(RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

“Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

Notable ESA programmes include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

Mission

The treaty establishing the European Space Agency reads:

The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

“Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

Activities

According to the ESA website, the activities are:

Observing the Earth
Human Spaceflight
Launchers
Navigation
Space Science
Space Engineering & Technology
Operations
Telecommunications & Integrated Applications
Preparing for the Future
Space for Climate

Programmes

Copernicus Programme
Cosmic Vision
ExoMars
FAST20XX
Galileo
Horizon 2000
Living Planet Programme
Mandatory

Every member country must contribute to these programmes:

Technology Development Element Programme
Science Core Technology Programme
General Study Programme
European Component Initiative

Optional

Depending on their individual choices the countries can contribute to the following programmes, listed according to:

Launchers
Earth Observation
Human Spaceflight and Exploration
Telecommunications
Navigation
Space Situational Awareness
Technology

ESA_LAB@

ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

Technische Universität Darmstadt (DE)
École des hautes études commerciales de Paris (HEC Paris) (FR)
Université de recherche Paris Sciences et Lettres (FR)
The University of Central Lancashire (UK)

Membership and contribution to ESA

By 2015, ESA was an intergovernmental organization of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programmes (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

Non-full member states
Slovenia
Since 2016, Slovenia has been an associated member of the ESA.

Latvia
Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

Canada
Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, The Canadian Space Agency [Agence spatiale canadienne, ASC] (CA) takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programmes and activities. Canadian firms can bid for and receive contracts to work on programmes. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).

Enlargement

After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programmes, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO” exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

Relationship with the European Union

The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

History

At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organisation for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

Cooperation with other countries and organizations

ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

European Union
ESA and EU member states
ESA-only members
EU-only members

ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programmes and to organising their respective roles relating to space.

The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

National space organisations of member states:

The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programmes. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialised in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

National Aeronautics Space Agency

ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programmes with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others.

National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Integral spacecraft

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space AdministrationSOHO satellite. Launched in 1995.

Also, the Hubble Space Telescope is a joint project of NASA and ESA.

National Aeronautics and Space Administration/European Space Agency[La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

Future ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.

National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation]Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Space Telescope annotated. Scheduled for launch in December 2021.

Gravity is talking. Lisa will listen. Dialogos of Eide.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration eLISA space based, the future of gravitational wave research.

NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon.

NASA ARTEMIS spacecraft depiction.

Cooperation with other space agencies

Since China has started to invest more money into space activities, the Chinese Space Agency[中国国家航天局] (CN) has sought international partnerships. ESA is, beside, The Russian Federal Space Agency Государственная корпорация по космической деятельности «Роскосмос»](RU) one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) Bepicolumbo in flight illustration. Artist’s impression of BepiColombo – ESA’s first mission to Mercury. ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”