From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation: “Radio footprints of galactic interactions discovered in the Shapely Supercluster”

CSIRO bloc

From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation

24 January 2022

Rachel Rayner

Interaction between clusters and groups of galaxies within a supercluster have been observed through the detection of radio waves by telescopes all over the world.

ESA Planck Shapley Supercluster.

A group of international radio astronomers led by INAF Italian National Institute for Astrophysics [Istituto Nazionale di Astrofisica](IT), and including Australian Astronomical Optics (AAO) Macquarie University (AU), have conducted a multi-frequency and multi-band study of the Shapley Supercluster, the largest constellation of galaxies in the local Universe. The astronomers discovered radio emission which was acting as a “bridge” between a cluster of galaxies and a group of galaxies.

The observations, published in Astronomy & Astrophysics, were carried out with the Australian ASKAP radio telescope, the South African MeerKAT radio telescope, and the Indian Giant Metrewave Radio Telescope (GMRT). Optical data collected with ESO’s VLT Survey Telescope (VST) and X-ray data from ESA’s XMM-Newton space telescope completed the study.

SKA ASKAP Pathfinder Radio Telescope.

SKA SARAO Meerkat telescope , 90 km outside the small Northern Cape town of Carnarvon, SA.

GMRT Upgraded Giant Metrewave Radio Telescope, an array of thirty telecopes, located near Pune in India.

ESO VLT Survey Telescope [VST].

European Space Agency [Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU) XMM Newton X-ray Telescope.

“The emission was triggered by the collision of these separate groupings of galaxies,” said co-author Professor Andrew Hopkins from AAO Macquarie. “Despite its difficulty to detect, this unique emission will now allow astronomers to better study the regions between clusters of galaxies.”

Tiziana Venturi, Director of the INAF’s Radio Astronomy Institute and lead author of the article, explains: “This exceptional emission finally allows us to study the regions between clusters of galaxies, the ideal environments to look for traces of interaction between these structures. In the study, we also report the discovery of another couple of objects – a very peculiar head-tail radio galaxy and a ram-pressure stripped spiral galaxy, whose origin is traced back to the same collision phenomenon that generated the emission on the megaparsec scale”. The emission extends on the scale of millions of light-years, and it takes the form of an arc and a filament.

“Ram pressure stripping can have a profound impact on the evolution of galaxies, removing the cooler gas that helps with star formation,” said Professor Hopkins. “This case shows that ram pressure stripping can involve both warm gas and radio-emitting plasma, and highlights the role of cluster-cluster interaction in triggering it,” said Professor Hopkins.

“The head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar, is now being observed in a number of clusters. Early analysis of this galaxy is showing some exciting results, which deserve further investigation.”

The Shapley Supercluster covers a large area of the southern hemisphere sky 600 million light-years from the Milky Way in the Centaurus constellation. As a result, the region hosts over 1000 clusters and groups of galaxies, which allows an in-depth study of the role of the environment on the evolution of galaxies and on the thermal (gas) and non-thermal (radio emission and magnetic fields) components that make up the clusters of galaxies.

This particular region first captured the interest of radio astronomers in the 1990s. However, before the development of ASKAP and MeerKAT (the two precursors of the SKA project, respectively managed by the Australia’s national science agency, CSIRO, and by the South African Radio Astronomy Observatory [SARAO]), it has basically been impossible to study it, in this fashion due to the lack of radio interferometers in the southern hemisphere with the necessary sensitivity.

Venturi adds “Now, ASKAP and MeerKAT have both unlocked greater access to the Shapley Concentration with the higher resolution and sensitivity to study this area in more depth. The synergy between the very high-quality radio data and other X-ray and optical data allowed a very detailed study.”

The radio data represent the state of the art of precursors of the SKA project and provide only a first taste of the wealth of information and discoveries that will come with the SKA radio telescopes (the construction will start in 2022 in Western Australia and South Africa), as well as the complexity of the data analysis that radio astronomers will have to face soon.

The study aims to highlight the observational effects of the so-called minor merger phenomena. Until now, it was not clear whether scale relations between various clusters and groups would also apply to these phenomena, less striking but much more common in the Universe.

“We were able to show through this study that these phenomena can be rather remarkable and that they leave detectable traces on single galaxies, on clusters and groups of galaxies, and even the regions between them,” said Professor Hopkins.

The observations captured in this research also confirm the importance of technologies like SKA precursors on the understanding of the weak population of radio sources in clusters, both associated with individual galaxies and associated with the intra-cluster and inter-cluster medium.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

CSIRO campus

CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organisation as CSIRO.

Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

Research and focus areas

Research Business Units

As at 2019, CSIRO’s research areas are identified as “Impact science” and organised into the following Business Units:

Agriculture and Food
Health and Biosecurity
Data 61
Land and Water
Mineral Resources
Oceans and Atmosphere

National Facilities
CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

Australian Animal Health Laboratory (AAHL)
Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Observatory and the Australian Square Kilometre Array Pathfinder.

STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) Parkes Observatory, [ Murriyang, the traditional Indigenous name] , located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) Mopra radio telescope.

Australian Square Kilometre Array Pathfinder.

NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA.

CSIRO Canberra campus.

ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU)”>CSIRO R/V Investigator.

UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

CSIRO Pawsey Supercomputing Centre AU)

Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

Others not shown


SKA- Square Kilometer Array.

SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.