From The Planetary Society (US): “Is life possible on rogue planets and moons?”

1

From The Planetary Society (US)

Jan 18, 2022
Jatan Mehta

1
An artist’s illustration of a Jupiter-like planet floating freely in space without a star. Image: The National Aeronautics and Space Administration(US).

Starless free-floating worlds might represent the most common habitable real estate of the universe.

Our search for planets around other stars in our galaxy has yielded us more than 4,500 worlds. Quite a few of these exoplanets seem to be Earth-like, where surface conditions could sustain liquid water and life as we know it.

But even as next generation telescopes aim to detect gases on such planets indicative of life, our search for such habitable worlds remains somewhat limited. Simply put: Earth-like planets are not the only places where life could form.

We know from our own solar system that icy moons orbiting giant planets far away from the Sun — such as Europa, Ganymede and Enceladus — can have underground, habitable oceans too. Their liquid water isn’t due to the Sun’s heat but rather warmed by friction between parts of their interiors being tugged by their planets’ gravity. If sunlight, a surface and an atmosphere aren’t necessary to make a world habitable, then why confine our search for life to Earth-like worlds that orbit stars?

Scientists think planets that don’t orbit any star, called free-floating planets or rogue planets, can harbor life too. These planets originally form around stars like any other but get kicked out of their system at some point due to gravitational effects of giant planets within.

Planets may have been ejected out of our solar system too over 4 billion years ago and now orbit our galaxy as dark worlds. Without a star, how can these dark worlds conceivably host life as we know it? Our exploration of the solar system combined with two decades of exoplanet research tells us there are several possibilities.

Oceans on worlds with no Suns but moons

Getting kicked out of a star system early on does have at least one advantage: strong ultraviolet light from young stars can’t strip away hydrogen atmospheres of these planets, which helps retain heat.

A 1999 research paper [Nature] suggests that a hydrogen-rich atmosphere can not only prevent free-floating planets from losing their internal radioactive heat to space but could also keep surface temperatures warm enough to sustain Earth-like oceans. Simulated hydrogen-rich environments in labs show that certain terrestrial microorganisms can thrive under such conditions. That said, life on free-floating worlds would still have to miraculously emerge using the planet’s miniscule internal energy, compared to over 99% of Earth’s energy coming from sunlight.

Hypothetically, if a free-floating planet has a large enough moon, it could further heat the planet using tidal mechanisms, similar to our Moon and Earth. When the Moon formed more than 4.4 billion years ago, it was about 15 times closer to us than it is today. It induced such a strong tidal heating that scientists think the Moon may have played a key role in making the early Earth habitable. Even if such heating lasts only a few hundred million years, it could provide a richer source of energy than the free-floating planet’s own heat to keep an ocean warm, initiate complex geology and possibly develop microbial life.

But how likely is it for free-floating planets to have moons in the first place?

“There’s nothing theoretically stopping us from having a Moon-sized satellite around a free-floating planet,” said Nick Oberg, a researcher at The Kapteyn Astronomical Institute – University of Gronigen [Rijksuniversiteit Groningen] (NL) and The Delft University of Technology [Technische Universiteit Delft](NL) studying formation of Jupiter’s moons. “Orbital simulations show that more than 47% of moons can remain bound to exiled gas giant planets.” Likewise, simulations with ejected Earth-mass planets show that more than 4% of them retain their Moon-sized satellite.

Habitable moons around starless worlds

In addition to exiled free-floating planets being able to retain their moons, it’s also possible for free-floating planets and their satellites to coalesce directly from clouds of gas and dust in interstellar space just like stars do. We have already discovered a free-floating planet candidate surrounded by a disk from which moons like those around Jupiter could form.

“Planets with multiple satellites, such as the Galilean moons of Jupiter, have even better chances of retaining those moons after being ejected,” said Patricio Javier Ávila, a Chilean researcher of free-floating planets at The University of Concepción [Universidad de Concepción](CL). Just as tidal heating from Jupiter and Saturn creates underground oceans on some of their icy moons, such satellites around free-floating planets could have subsurface oceans too [Astronomy and Astrophysics].

“If a free-floating planet retains multiple moons and their elliptical orbits, tidal heating could be sustained and with it the subsurface oceans,” Oberg said.

2
Europa’s subsurface ocean cutaway An artist’s illustration of an underground liquid water ocean beneath the thick icy crust of Jupiter’s moon Europa. A similar ocean exists on Saturn’s moon Enceladus too.Image: NASA.

When NASA’s Cassini spacecraft flew through water plumes erupting from Saturn’s icy moon Enceladus — sourced from its underground ocean — it found a variety of organic molecules, which are building blocks of life.

National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

Cassini’s observations suggest that Enceladus’ ocean seems to have potentially habitable hydrothermal vents similar to those found in the deepest, darkest parts of Earth’s oceans. Not only do various microorganisms like methanogens thrive near such terrestrial vents, scientists think this is how life on Earth could’ve started in the first place [Nature Reviews Microbiology].

Microorganisms can hypothetically survive [Nature Communications] on ocean floors of Enceladus-like icy moons around free-floating planets too, well protected from asteroid impacts and harmful radiation by thick icy crusts above.

4
This graphic illustrates hydrothermal vents on Enceladus’ ocean floor that could provide habitable environments for microbial life to form and thrive.Image: NASA-JPL/Caltech (US).

There’s another possibility, though. Just like Saturn’s moon Titan has a thick atmosphere a sufficiently massive moon of a free-floating planet could have one too. Coupled with tidal heating, Earth-mass exomoons of these could have high enough temperatures to sustain oceans on their surface for hundreds of millions of years, and be favorable to microbial life.

Okay, but can we even detect starless worlds?

For all their potential to host life, it’s incredibly difficult to detect dark, free-floating worlds in our galaxy using traditional exoplanet-catching methods. It’s hard enough already to find miniscule planets even when they have stars!

Even though free-floating planets should be common, and at least one of them might be lying within (astronomically) merely 10 light years from us, we haven’t found any yet.

“It’s challenging to verify these objects as true free-floating planets because their mass can be so difficult to accurately estimate,” said Oberg.

In 2013, scientists directly imaged [The Astrophysical Journal] a Jupiter-like free-floating planet candidate 80 light years away, but it’s hard to tell it apart from a class of objects called brown dwarfs.

Artist’s concept of a Brown dwarf [not quite a] star. NASA/JPL-Caltech.

Example of direct imaging-This false-color composite image traces the motion of the planet Fomalhaut b, a world captured by direct imaging. Credit: The National Aeronautics and Space Administration(US), The European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), and P. Kalas, The University of California-Berkeley (US) and The SETI Institute (US).

These are more massive than Jupiter but are called “failed stars” because they aren’t massive enough to fuse hydrogen in their cores.

6
Directly image free-floating world Direct image of the free-floating planet candidate PSO J318.5-22, visible as the dot with the reddish hue.Image: N. Metcalfe / Pan-STARRS 1

U Hawaii (US) Pan-STARRS1 (PS1) Panoramic Survey Telescope and Rapid Response System is a 1.8-meter diameter telescope situated at Haleakala Observatories near the summit of Haleakala, altitude 10,023 ft (3,055 m) on the Island of Maui, Hawaii, USA. It is equipped with the world’s largest digital camera, with almost 1.4 billion pixels.

Fourteen more free-floating candidates have been detected using a technique called “gravitational microlensing”, wherein a planet’s gravitational field bends light from objects behind them and magnifies their view like a fish bowl. These are difficult to confirm too.

Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835.

“Gravitational microlensing detections are one-time events, making them harder to follow up on,” Ávila said. “It’s also difficult to distinguish a light brown dwarf from a free-floating planet as the technique favors more massive objects.”

Nevertheless, brown dwarfs could host habitable moons in the same way free-floating planets do. Brown dwarfs have been observed too so there’s some hope.

Interestingly, moons of free-floating worlds may be relatively easier to detect than their parent objects. Even as we haven’t yet found an exomoon around a typical exoplanet with a host star, we might spot a free-floating object’s moon first because there would be no noise from a glaring star when the moon passes in front of the planet from our view.

Next generation space telescopes, such as NASA’s recently launched JWST and ESA’s upcoming PLATO telescope, could detect Moon- and Titan-sized satellites orbiting free-floating planets and brown dwarfs.

National Aeronautics Space Agency(US)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope(US) annotated. Scheduled for launch in 2011 delayed to October 2021 finally launched December 25, 2021.

ESA PLATO spacecraft depiction

Wide-field surveys by NASA’s upcoming Nancy Grace Roman Telescope should increase our chances even more, as should better gravitational microlensing surveys in the future.

National Aeronautics and Space Administration(US) Nancy Grace Roman Space Telescope [WFIRST] depiction.

Detecting exomoons and the nature of their orbits will allow scientists to determine properties of their parent objects.

Even if we discover no or few exomoons around free-floating worlds, next generation telescopes will still advance our understanding of moons in general.

“JWST and future telescopes will vastly increase our understanding of moon-forming disks around regular exoplanets, which are not only easier to spot and study than exomoons but have already been detected,” said Jesper Tjoa, a researcher at the University of Heidelberg. An example of such a system is the moon-forming disk around the young Jupiter-like planet PDS 70c nearly 400 light years away.

6
A moon-forming disk Wide and close-up views of the moon-forming disk surrounding PDS 70c, a young Jupiter-like planet nearly 400 light-years away, as seen with the ALMA telescope on Earth.Image: The Atacama Large Millimiter/submillimeter Array (CL) / The European Southern Observatory [Observatoire européen austral][Europaiche Sûdsternwarte] (EU)(CL).

European Southern Observatory/National Radio Astronomy Observatory(US)/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

European Southern Observatory(EU) , Very Large Telescope at Cerro Paranal in the Atacama Desert •ANTU (UT1; The Sun ) •KUEYEN (UT2; The Moon ) •MELIPAL (UT3; The Southern Cross ), and •YEPUN (UT4; Venus – as evening star). Elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo.

Finding exomoons across the galaxy and understanding how they form and evolve would provide us insights into how moons in our solar system formed, and how common habitable moons are.

The habitable worlds next door

The possibility that icy moons of free-floating planets or of exoplanets with host stars could harbor life is tantalizing, and ties back to our solar system. Even if we do find habitable exomoons with great difficulty, there’s no way for us to be sure if they host life. The only place for us to definitively confirm alien exomoon life is our solar system, wherein we can send spacecraft to measure things with precision and even fetch samples. In fact, studying icy moons of our solar system with spacecraft is what helps us model the possibilities of habitable exomoons.

This is precisely why some of the biggest planetary science missions launching this decade, like JUICE and Europa Clipper, are dedicated to finding if underground oceans of Jupiter’s icy moons are habitable.

European Space Agency [Agence spatiale européenne](EU) Juice spacecraft depiction.

European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)Juice Schematic.

NASA Europa Clipper depiction.
NASA/Europa Clipper annotated.

Future mission concepts such as the Enceladus Life Finder would look for direct signs of life in Enceladus’ water plumes. NASA is launching the Dragonfly mission later in the decade to explore Titan’s surface to understand possible starting ingredients for life on early Earth and elsewhere.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

3

In 1980, Carl Sagan, Louis Friedman, and Bruce Murray founded The Planetary Society (US) . They saw that there was enormous public interest in space, but that this was not reflected in government, as NASA’s budget was cut again and again.

Today, The Planetary Society (US) continues this work, under the leadership of CEO Bill Nye, as the world’s largest and most influential non-profit space organization. The organization is supported by over 50,000 members in over 100 countries, and by hundreds of volunteers around the world.

Our mission is to empower the world’s citizens to advance space science and exploration. We advocate for space and planetary science funding in government, inspire and educate people around the world, and develop and fund groundbreaking space science and technology.

We introduce people to the wonders of the cosmos, bridging the gap between the scientific community and the general public to inspire and educate people from all walks of life.

We give every citizen of the planet the opportunity to make their voices heard in government and effect real change in support of space exploration.

And we bring ordinary people directly to the frontier of exploration as we crowdfund innovative and exciting space technologies.