From The University of Minnesota College of Science and Engineering (US) and The School of Physics and Astronomy at the University of Minnesota-Twin Cities (US): “New research may help scientists unravel the physics of the solar wind”

From The University of Minnesota College of Science and Engineering (US)




The School of Physics and Astronomy at the University of Minnesota-Twin Cities (US)



The University of Minnesota Twin Cities (US)


Understanding the solar wind can help scientists predict how it will affect Earth’s satellites and astronauts in space.

NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab (US).

A new study led by University of Minnesota Twin Cities researchers, using data from NASA’s Parker Solar Probe, provides insight into what generates and accelerates the solar wind, a stream of charged particles released from the sun’s corona. Understanding how the solar wind works can help scientists predict “space weather,” or the response to solar activity—such as solar flares—that can impact both astronauts in space and much of the technology people on Earth depend on.

The paper is published in The Astrophysical Journal Letters.

The scientists used data gathered from Parker Solar Probe, which launched in 2018 with the goal to help scientists understand what heats the Sun’s corona (the outer atmosphere of the sun) and generates the solar wind. To answer these questions, scientists need to understand the ways in which energy flows from the sun. The latest round of data was obtained in August 2021 at a distance of 4.8 million miles from the sun—the closest a spacecraft has ever been to the star.

Previous research has indicated that in the solar wind, at distances from about 35 solar radii (one solar radius is a little more than 432,000 miles) out to the Earth’s orbit at about 215 solar radii, electromagnetic waves called “whistler” waves help regulate the heat flux, one form of energy flow. In this new study, the University of Minnesota-led research team discovered that in a region closer to the sun, inside around 28 solar radii, there are no whistler waves.

Instead, the researchers saw a different kind of wave that was electrostatic instead of electromagnetic. And in that same region, they noticed something else: the electrons showed the effect of an electric field created in part by the pull of the sun’s gravity, similar to what happens at the Earth’s poles where a “polar wind” is accelerated.

“What we found is that when we get inside 28 solar radii, we lose the whistlers. That means the whistlers can’t be doing anything to control the heat flux in that region,” said Cynthia Cattell, lead author on the paper and a professor in The School of Physics and Astronomy at the University of Minnesota-Twin Cities (US). “This result was very, very surprising to people. It has impacts not only for understanding the solar wind and the winds of other stars, but it’s also important for understanding the heat flux of a lot of other astrophysical systems to which we can’t send satellites—things like how star systems form.”

Learning about the solar wind is also important to scientists for other reasons. For one, it can disturb earth’s magnetic field, generating “space weather” events that can make satellites malfunction, impact communication and GPS signals, and cause power outages on Earth at northern latitudes like Minnesota. The energetic particles that propagate through the solar wind can also be harmful to astronauts traveling in space.

“Scientists want to be able to predict space weather,” Cattell explained. “And if you don’t understand the details of energy flow close to the sun, then you can’t predict how fast the solar wind will be moving or what its density will be when it reaches Earth. These are some of the properties that determine how solar activity affects us.”

In late 2024, the Parker Solar Probe will fly to an even closer distance of 3.8 million miles from the sun. Moving forward, Cattell and her colleagues are excited to see the next round of data from the spacecraft. Their next goal will be to figure out why this absence of whistler waves exists so close to the sun, how the electrons accelerated by the gravity-associated electric field might excite other waves, and how that impacts the solar wind.

In addition to Cattell, the research team included University of Minnesota School of Physics and Astronomy researchers Elizabeth Hanson, John Dombeck, research director Keith Goetz, and Ph.D. alumnus Mike Johnson; NASA Goddard Space Flight Center (US) researcher Aaron Breneman; The University of Iowa (US) associate professor Jasper Halekas; The University of California-Berkeley (US) professor Stuart Bale, The University of California-Berkeley (US) Space Sciences Laboratory associate researcher Marc Pulupa, project scientist David Larson, and assistant researcher Phyllis Whittlesey; The University of Orléans [Université d’Orléans](FR) professor Thierry Dudok de Wit; The West Virginia University(US) assistant professor Katherine Goodrich; The University of Colorado-Boulder (US) assistant professor David Malaspina; The Harvard-Smithsonian Center for Astrophysics(US) researchers Tony Case and Michael Stevens; and The University of Michigan(US) professor Justin C. Kasper.

The research was funded by NASA, and the simulation work was supported by the Minnesota Supercomputing Institute on the University of Minnesota Twin Cities campus. Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The program is managed by NASA’s Goddard Space Flight Center for the Heliophysics Division of NASA’s Science Mission Directorate. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built and operates the Parker Solar Probe spacecraft and manages the mission for NASA.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition


The College of Science and Engineering (CSE) is one of the colleges of the University of Minnesota in Minneapolis, Minnesota. On July 1, 2010, the college was officially renamed from the Institute of Technology (IT). It was created in 1935 by bringing together the University’s programs in engineering, mining, architecture, and chemistry. Today, CSE contains 12 departments and 24 research centers that focus on engineering, the physical sciences, and mathematics.


Aerospace Engineering and Mechanics
Biomedical Engineering
Chemical Engineering and Materials Science
Civil, Environmental, and GeoEngineering
Computer Science and Engineering
Earth Sciences (formerly called Geology and Geophysics)
Electrical and Computer Engineering
Industrial and Systems Engineering
Mechanical Engineering
Physics and Astronomy
Additionally, CSE pairs with other departments at the University to offer degree-granting programs in:
Bioproducts and Biosystems Engineering, with CFANS (formerly two departments: Biosystems and Agricultural Engineering, and Bio-based Products)
And two other CSE units grant advanced degrees:
Technological Leadership Institute (formerly Center for the Development of Technological Leadership)
History of Science and Technology

Research centers

BioTechnology Institute
Characterization Facility
Charles Babbage Institute – CBI website
Digital Technology Center
William I. Fine Theoretical Physics Institute
Industrial Partnership for Research in Interfacial and Materials Engineering
Institute for Mathematics and its Applications
Minnesota Nano Center
NSF Engineering Research Center for Compact and Efficient Fluid Power
NSF Materials Research Science and Engineering Center
NSF Multi-Axial Subassemblage Testing (MAST) System
NSF National Center for Earth-surface Dynamics (NCED)
The Polar Geospatial Center
Center for Transportation Studies
University of Minnesota Supercomputing Institute
GroupLens Center for Social and Human-Centered Computing

Educational centers

History of Science and Technology
School of Mathematics Center for (K-12) Educational Programs
Technological Leadership Institute
UNITE Distributed Learning


The University of Minnesota Twin Cities is a public research university in Minneapolis and Saint Paul, MN. The Twin Cities campus comprises locations in Minneapolis and St. Paul approximately 3 miles (4.8 km) apart, and the St. Paul location is in neighboring Falcon Heights. The Twin Cities campus is the oldest and largest in The University of Minnesota (US) system and has the sixth-largest main campus student body in the United States, with 51,327 students in 2019-20. It is the flagship institution of the University of Minnesota System, and is organized into 19 colleges, schools, and other major academic units.

The Minnesota Territorial Legislature drafted a charter for The University of Minnesota as a territorial university in 1851, seven years before Minnesota became a state. Today, the university is classified among “R1: Doctoral Universities – Very high research activity”. The University of Minnesota is a member of The Association of American Universities (US) and is ranked 17th in research activity, with $954 million in research and development expenditures in the fiscal year 2018. In 2001, the University of Minnesota was included in a list of Public Ivy universities, which includes publicly funded universities thought to provide a quality of education comparable to that of the Ivy League.

University of Minnesota faculty, alumni, and researchers have won 26 Nobel Prizes and three Pulitzer Prizes. Among its alumni, the university counts 25 Rhodes Scholars, seven Marshall Scholars, 20 Truman Scholars, and 127 Fulbright recipients. The University of Minnesota also has Guggenheim Fellowship, Carnegie Fellowship, and MacArthur Fellowship holders, as well as past and present graduates and faculty belonging to The American Academy of Arts and Sciences (US), The National Academy of Sciences (US), The National Academy of Medicine (US), and The National Academy of Engineering(US). Notable University of Minnesota alumni include two vice presidents of the United States, Hubert Humphrey and Walter Mondale, and Bob Dylan, who received the 2016 Nobel Prize in Literature.

The Minnesota Golden Gophers compete in 21 intercollegiate sports in the NCAA Division I Big Ten Conference and have won 29 national championships. As of 2021, Minnesota’s current and former students have won a total of 76 Olympic medals.

The University of Minnesota was founded in Minneapolis in 1851 as a college preparatory school, seven years prior to Minnesota’s statehood. It struggled in its early years and relied on donations to stay open from donors including South Carolina Governor William Aiken Jr.

In 1867, the university received land grant status through the Morrill Act of 1862.

An 1876 donation from flour miller John S. Pillsbury is generally credited with saving the school. Since then, Pillsbury has become known as “The Father of the University.” Pillsbury Hall is named in his honor.


The university is organized into 19 colleges, schools, and other major academic units:

Center for Allied Health Programs
College of Biological Sciences
College of Continuing and Professional Studies
School of Dentistry
College of Design
College of Education and Human Development
College of Food, Agricultural and Natural Resource Sciences
Graduate School
Law School
College of Liberal Arts
Carlson School of Management
Medical School
School of Nursing
College of Pharmacy
Hubert H. Humphrey School of Public Affairs
School of Public Health
College of Science and Engineering
College of Veterinary Medicine

Institutes and centers

Six university-wide interdisciplinary centers and institutes work across collegiate lines:

Center for Cognitive Sciences
Consortium on Law and Values in Health, Environment, and the Life Sciences
Institute for Advanced Study, University of Minnesota
Institute for Translational Neuroscience
Institute on the Environment
Minnesota Population Center

In 2021, the University of Minnesota was ranked as 40th best university in the world by The Academic Ranking of World Universities (ARWU), which assesses academic and research performance. The same 2021 ranking by subject placed The University of Minnesota’s ecology program as 2nd best in the world, its management program as 10th best, its biotechnology program as 11th best, mechanical engineering and medical technology programs as 14th best, law and psychology programs as 19th best, and veterinary sciences program as 20th best. The Center for World University Rankings (CWUR) for 2021-22 ranked Minnesota 46th in the world and 26th in the United States. The 2021 Nature Index, which assesses the institutions that dominate high quality research output, ranked Minnesota 53rd in the world based on research publication data from 2020. U.S. News and World Report ranked Minnesota as the 47th best global university for 2021. The 2022 Times Higher Education World University Rankings placed Minnesota 86th worldwide, based primarily on teaching, research, knowledge transfer and international outlook.

In 2021, The University of Minnesota was ranked as the 24th best university in the United States by The Academic Ranking of World Universities, and 20th in the United States in Washington Monthly’s 2021 National University Rankings. The University of Minnesota’s undergraduate program was ranked 68th among national universities by U.S. News and World Report for 2022, and 26th in the nation among public colleges and universities. The same publication ranked The University of Minnesota’s graduate Carlson School of Management as 28th in the nation among business schools, and 6th in the nation for its information systems graduate program. Other graduate schools ranked highly by U.S. News and World Report for 2022 include The University of Minnesota Law School at 22nd, The University of Minnesota Medical School, which was 4th for family medicine and 5th for primary care, The University of Minnesota College of Pharmacy, which ranked 3rd, The Hubert H. Humphrey School of Public Affairs, which ranked 9th, The University of Minnesota College of Education and Human Development, which ranked 10th for education psychology and special education, and The University of Minnesota School of Public Health, which ranked 10th.

In 2019, The Center for Measuring University Performance ranked The University of Minnesota 16th in the nation in terms of total research, 29th in endowment assets, 22nd in annual giving, 28th in the number of National Academies of Sciences, Engineering and Medicine memberships, 18th in its number of faculty awards, and 14th in its number of National Merit Scholars. Minnesota is listed as a “Public Ivy” in 2001 Greenes’ Guides The Public Ivies: America’s Flagship Public Universities.



The Minnesota Daily has been published twice a week during the normal school season since the fall semester 2016. It is printed weekly during the summer. The Daily is operated by an autonomous organization run entirely by students. It was first published on May 1, 1900. Besides everyday news coverage, the paper has also published special issues, such as the Grapevine Awards, Ski-U-Mah, the Bar & Beer Guide, Sex-U-Mah, and others.

A long-defunct but fondly remembered humor magazine, Ski-U-Mah, was published from about 1930 to 1950. It launched the career of novelist and scriptwriter Max Shulman.

A relative newcomer to the university’s print media community is The Wake Student Magazine, a weekly that covers UMN-related stories and provides a forum for student expression. It was founded in November 2001 in an effort to diversify campus media and achieved student group status in February 2002. Students from many disciplines do all of the reporting, writing, editing, illustration, photography, layout, and business management for the publication. The magazine was founded by James DeLong and Chris Ruen. The Wake was named the nation’s best campus publication (2006) by The Independent Press Association.

Additionally, The Wake publishes Liminal, a literary journal begun in 2005. Liminal was created in the absence of an undergraduate literary journal and continues to bring poetry and prose to the university community.

The Wake has faced a number of challenges during its existence, due in part to the reliance on student fees funding. In April 2004, after the Student Services Fees Committee had initially declined to fund it, the needed $60,000 in funding was restored, allowing the magazine to continue publishing. It faced further challenges in 2005, when its request for additional funding to publish weekly was denied and then partially restored.

In 2005 conservatives on campus began formulating a new monthly magazine named The Minnesota Republic. The first issue was released in February 2006, and funding by student service fees started in September 2006.


The campus radio station, KUOM “Radio K,” broadcasts an eclectic variety of independent music during the day on 770 kHz AM. Its 5,000-watt signal has a range of 80 miles (130 km), but shuts down at dusk because of Federal Communications Commission regulations. In 2003, the station added a low-power (8-watt) signal on 106.5 MHz FM overnight and on weekends. In 2005, a 10-watt translator began broadcasting from Falcon Heights on 100.7 FM at all times. Radio K also streams its content at With roots in experimental transmissions that began before World War I, the station received the first AM broadcast license in the state on January 13, 1922, and began broadcasting as WLB, changing to the KUOM call sign about two decades later. The station had an educational format until 1993, when it merged with a smaller campus-only music station to become what is now known as Radio K. A small group of full-time employees are joined by over 20 part-time student employees who oversee the station. Most of the on-air talent consists of student volunteers.


Some television programs made on campus have been broadcast on local PBS station KTCI channel 17. Several episodes of Great Conversations have been made since 2002, featuring one-on-one discussions between University faculty and experts brought in from around the world. Tech Talk was a show meant to help people who feel intimidated by modern technology, including cellular phones and computers.