From The Kavli Institute for the Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP): “New theory finds upcoming satellite mission will be able to detect more than expected”


From The Kavli Institute for the Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP)

Kavli IPMU

The upcoming satellite experiment LiteBIRD is expected to probe the physics of the very early Universe if the primordial inflation happened at high energies.


But now, a new paper in Physical Review Letters shows it can also test inflationary scenarios operating at lower energies.

The green line is the lowest signal the LiteBIRD can still observe, so any observable signal should be above that line. The red and black lines are the team’s predictions for two different parameter specifications in their model, showing detection is possible. In contrast, the more standard inflationary models operating at the same energy as the team’s mechanism predict the lower gray (dashed) line, which is below the sensitivity limit of LiteBIRD. (Credit: Cai et al.)

Cosmologists believe that in its very early stages, the Universe underwent a very rapid expansion called “cosmic inflation”.


Alan Guth, from M.I.T., who first proposed cosmic inflation.

Lamda Cold Dark Matter Accerated Expansion of The universe http the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

Alan Guth’s notes:
Alan Guth’s original notes on inflation.

A success story of this hypothesis is that even the simplest inflationary models are able to accurately predict the inhomogeneous distribution of matter in the Universe. During inflation, these vacuum fluctuations were stretched to astronomical scales, becoming the source all the structure in the Universe, including the Cosmic Microwave Background [CMB] anisotropies, distribution of Dark Matter and galaxies.

CMB per European Space Agency(EU) Planck.

The same mechanism also produced gravitational waves.

Gravitational waves. Credit: W.Benger-Zib. MPG Institute for Gravitational Physics (DE)

These gravitational wave propagating ripples of space and time are important for understanding the physics during the inflationary epoch. In general, detecting these gravitational waves is considered determining the energy at which inflation took place. It is also linked to how much the inflation field-or the energy source of inflation-can change during inflation — a relation referred to as the “Lyth bound”.

An artist’s conception of how gravitational waves distort the shape of space and time in the universe (Credit: Kavli IPMU).

The primordial gravitational waves generated from vacuum are extremely weak, and are very difficult to detect, but the JAXA-led LiteBIRD mission might be able to detect them via the polarization measurements of the Cosmic Microwave Background. Because of this, understanding primordial gravitational waves theoretically is gaining interest so any potential detection by LiteBIRD can be interpreted. It is expected LiteBIRD will be able to detect primordial gravitational waves if inflation happened at sufficiently high energies.

Several inflationary models constructed in the framework of quantum gravity often predict very low energy scale for inflation, and so would be untestable by LiteBIRD. However, a new study by researchers, including the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), has shown the opposite. The researchers argue such scenarios of fundamental importance can be tested by LiteBIRD, if they are accompanied by additional fields, sourcing gravitational waves.

The researchers suggest an idea, logically very different from the usual.

“Within our framework in addition to the gravitational waves originating from vacuum fluctuations, a large amount of gravitational waves can be sourced by the quantum vacuum fluctuations of additional fields during inflation. Due to this we were able to produce an observable amount of gravitational waves even if inflation takes place at lower energies.

“The quantum fluctuations of scalar fields during inflation are typically small, and such induced gravitational waves are not relevant in standard inflationary scenarios. However, if the fluctuations of the additional fields are enhanced, they can source a significant amount of gravitational waves,” said paper author and Kavli IPMU Project Researcher Valeri Vardanyan.

Other researchers have been working on related ideas, but so far no successful mechanism based on scalar fields alone had been found.

“The main problem is that when you generate gravitational waves from enhanced fluctuations of additional fields, you also simultaneously generate extra curvature fluctuations, which would make the Universe appear more clumpy than it is in reality. We elegantly decoupled the generation of the two types of fluctuations and solved this problem,” said Vardanyan.

In their paper, the researchers proposed a proof-of-concept based on two scalar fields operating during inflation.

“Imagine a car with two engines, corresponding to the two fields of our model. One of the engines is connected to the wheels of the car, while the other one is not. The first one is responsible for moving the car, and, when on a muddy road, for generating all the traces on the road. These represent the seeds of structure in the Universe. The second engine is only producing sound. This represents the gravitational waves, and does not contribute to the movement of the car, or the generation of traces on the road,” said Vardanyan.

The team quantitatively demonstrated their mechanism works, and even calculated the predictions of their model for the upcoming LiteBIRD mission.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

The Kavli Institute for the Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within the University of Tokyo Institutes for Advanced Study (UTIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the “Kavli Institute for the Physics and Mathematics of the Universe” in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.