From The Kavli Institute for The Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP): “Gravitational waves could be key to answering why more matter was left over after Big Bang”


From The Kavli Institute for the Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP)

Kavli IPMU

December 8, 2021

Asymmetry in the universe may have been the result of the following process: (1) The potential for the inflation has a shape and starts away from its minimum. (2) At the end of inflation a field starts rolling around to its minimum. (3) In different patches blobs of field appear. (4) These blobs melt so fast they practically vanish. (5) This sudden vanishing results in enhanced ripples in space and time. Graham et al. suggest these ripples could be detected by gravitational wave detectors. (Credit: Kavli IPMU)

A team of theoretical researchers have found it might be possible to detect Q-balls in gravitational waves and their detection would answer why more matter than anti-matter to be left over after the Big Bang, reports a new study in Physical Review Letters.

The reason humans exist is because at some time in the first second of the Universe’s existence, somehow more matter was produced than anti-matter. The asymmetry is so small that only one extra particle of matter was produced every time ten billion particles of anti matter were produced. The problem is that even though this asymmetry is small, current theories of physics cannot explain it. In fact, standard theories say matter and anti matter should have been produced in exactly equal quantities, but the existence of humans, Earth, and everything else in the universe proves there must be more, undiscovered physics.

Currently, a popular idea shared by researchers is that this asymmetry was produced just after inflation, a period in the early universe when there was a very rapid expansion.


Alan Guth, from M.I.T., who first proposed cosmic inflation

Lamda Cold Dark Matter Accerated Expansion of The universe http the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

Alan Guth’s notes:
Alan Guth’s original notes on inflation

A blob of field could have stretched out over the horizon to evolve and fragment in just the right way to produce this asymmetry.

But testing this paradigm directly has been difficult, even using the largest particle accelerators in the world, since the energy involved is billions to trillions of times higher than anything humans can produce on Earth.

Now, a team of researchers in Japan and the US, including Kavli Institute for the Physics and Mathematics of the Universe Project Researcher Graham White, and Visiting Senior Scientist Alexander Kusenko, who is also a Professor of Physics and Astronomy at
The University of California at Los Angeles(US), have found a new way to test this proposal by using blobs of field known as Q-balls.

The nature of Q-balls is a bit tricky to understand, but they are bosons like the Higgs boson, explains Graham White, lead author and Project Researcher at Kavli IPMU.

European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) ATLAS Higgs Event

European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) CMS Higgs Event May 27, 2012.

“A Higgs particle exists when the Higgs field is excited. But the Higgs field can do other things, like form a lump. If you have a field that is very like the Higgs field but it has some sort of charge – not an electric charge, but some sort of charge – then one lump has the charge as one particle. Since charge can’t just disappear, the field has to decide whether to be in particles or lumps. If it is lower energy to be in lumps than particles, then the field will do that. A bunch of lumps coagulating together will make a Q-ball.”

“We argue that very often these blobs of field known as Q-balls stick around for some time. These Q-balls dilute slower than the background soup of radiation as the Universe expands until, eventually, most of the energy in the Universe is in these blobs. In the meantime, slight fluctuations in the density of the soup of radiation start to grow when these blobs dominate. When the Q-balls decay, their decay is so sudden and rapid that the fluctuations in the plasma become violent soundwaves which leads to spectacular ripples in space and time, known as gravitational waves, that could be detected over the next few decades. The beauty of looking for gravitational waves is that the Universe is completely transparent to gravitational waves all the way back to the beginning,” said White.

The researchers also found the conditions to create these ripples are very common, and the resulting gravitational waves should be large enough, and low enough frequency to be detected by conventional gravitational wave detectors.

“If this is how the asymmetry was made it is almost certain that we will soon detect a signal from the beginning of time confirming this theory on why we, and the rest of the world of matter, exist at all,” said White.

About the science paper:
Authors: Graham White (1), Lauren Pearce (2), Daniel Vagie (3), and Alexander Kusenko (4,1)

Author affiliations:
1. Kavli IPMU (WPI), UTIAS, The University of Tokyo
2. The Pennsylvania State University (US)
3. Department of Physics and Astronomy,
The University of Oklahoma (US)
4. Department of Physics and Astronomy, The University of California-Los Angeles (US)

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

Kavli Institute for the Physics and Mathematics of the Universe (IPMU) [カブリ数物連携宇宙研](JP) at The University of Tokyo [東京大学](JP) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within the University of Tokyo Institutes for Advanced Study (UTIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the “Kavli Institute for the Physics and Mathematics of the Universe” in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.