From The University of Maryland Computer Mathematics and Natural Sciences (US): “New Study Shows the Largest Comet Ever Observed was Active at Near-Record Distance”

From The University of Maryland Computer Mathematics and Natural Sciences (US)

November 29, 2021

Kimbra Cutlip
301-405-9463
kcutlip@umd.edu

UMD astronomers discovered that comet Bernardinelli-Bernstein is among the most distant active comets from the sun providing key information about its composition.

1
The Comet Bernardinelli-Bernstein (BB), represented in this artist rendition as it might look in the outer Solar System, is estimated to be about 1000 times more massive than a typical comet. The largest comet discovered in modern times, it is among the most distant comets to be discovered with a coma, which means ice within the comet is vaporizing and forming an envelope of dust and vapor around the comet’s core. (Image Credit: J. da Silva/Spaceengine. NOIRLab/NSF/The Association of Universities for Research in Astronomy (AURA)(US).

A new study by University of Maryland astronomers shows that comet Bernardinelli-Bernstein (BB), the largest comet ever discovered, was active long before previously thought, meaning the ice within it is vaporizing and forming an envelope of dust and vapor known as a coma. Only one active comet has been observed farther from the sun, and it was much smaller than comet BB.

The finding will help astronomers determine what BB is made of and provide insight into conditions during the formation of our solar system. The finding was published in The Planetary Science Journal on November 29, 2021.

“These observations are pushing the distances for active comets dramatically farther than we have previously known,” said Tony Farnham, a research scientist in the UMD Department of Astronomy and the lead author of the study.

Knowing when a comet becomes active is key to understanding what it’s made of. Often called “dirty snowballs” or “icy dirtballs,” comets are conglomerations of dust and ice left over from the formation of the solar system. As an orbiting comet approaches its closest point to the sun, it warms, and the ices begin to vaporize. How warm it must be to start vaporizing depends on what kind of ice it contains (e.g., water, carbon dioxide, carbon monoxide or some other frozen compound).

Scientists first discovered comet BB in June 2021 using data from the Dark Energy Survey, a collaborative, international effort to survey the sky over the Southern hemisphere. The survey captured the bright nucleus of the comet but did not have high-enough resolution to reveal the envelope of dust and vapor that forms when the comet becomes active.

At 100 km across, comet BB is the largest comet ever discovered by far, and it is farther from the sun than the planet Uranus. Most comets are around 1 km or so and much closer to the sun when they are discovered. When Farnham heard about the discovery, he immediately wondered if images of comet BB had been captured by the Transient Exoplanet Survey Satellite (TESS), which observes one area of the sky for 28 days at a time.

Massachusetts Institute of Technology(US) TESS – Transiting Exoplanet Survey Satellite replaced the Kepler Space Telescope in search for exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by The Massachusetts Institute of Technology (US), and managed by NASA’s Goddard Space Flight Center (US).

He thought TESS’s longer exposure times could provide more detail.

Farnham and his colleagues combined thousands of images of comet BB collected by TESS from 2018 through 2020. By stacking the images, Farnham was able to increase the contrast and get a clearer view of the comet. But because comets move, he had to layer the images so that comet BB was precisely aligned in each frame. That technique removed the errant specks from individual shots while amplifying the image of the comet, which allowed researchers to see the hazy glow of dust surrounding BB, proof that BB had a coma and was active.

To ensure the coma wasn’t just a blur caused by the stacking of images, the team repeated this technique with images of inactive objects from the Kuiper belt, which is a region much farther from the sun than comet BB where icy debris from the early solar system is plentiful.

Kuiper Belt. Minor Planet Center.

When those objects appeared crisp, with no blur, researchers were confident that the faint glow around comet BB was in fact an active coma.

The size of comet BB and its distance from the sun suggests that the vaporizing ice forming the coma is dominated by carbon monoxide. Since carbon monoxide may begin to vaporize when it is up to five times farther away from the sun than comet BB was when it was discovered, it is likely that BB was active well before it was observed.

“We make the assumption that comet BB was probably active even further out, but we just didn’t see it before this,” Farnham said. “What we don’t know yet is if there’s some cutoff point where we can start to see these things in cold storage before they become active.”

According to Farnham, the ability to observe processes like the formation of a cometary coma farther than ever before opens an exciting new door for astronomers.

“This is just the beginning,” Farnham said. “TESS is observing things that haven’t been discovered yet, and this is kind of a test case of what we will be able to find. We have the potential of doing this a lot, once a comet is seen, going back through time in the images and finding them while they are at farther distances from the sun.”

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Maryland Campus

About The University of Maryland Computer Mathematics and Natural Sciences (US)

The thirst for new knowledge is a fundamental and defining characteristic of humankind. It is also at the heart of scientific endeavor and discovery. As we seek to understand our world, across a host of complexly interconnected phenomena and over scales of time and distance that were virtually inaccessible to us a generation ago, our discoveries shape that world. At the forefront of many of these discoveries is the College of Computer, Mathematical, and Natural Sciences (CMNS).

CMNS is home to 12 major research institutes and centers and to 10 academic departments: astronomy, atmospheric and oceanic science, biology, cell biology and molecular genetics, chemistry and biochemistry, computer science, entomology, geology, mathematics, and physics.

Our Faculty

Our faculty are at the cutting edge over the full range of these disciplines. Our physicists fill in major gaps in our fundamental understanding of matter, participating in the recent Higgs boson discovery, and demonstrating the first-ever teleportation of information between atoms. Our astronomers probe the origin of the universe with one of the world’s premier radio observatories, and have just discovered water on the moon. Our computer scientists are developing the principles for guaranteed security and privacy in information systems.

Our Research

Driven by the pursuit of excellence, the University of Maryland has enjoyed a remarkable rise in accomplishment and reputation over the past two decades. By any measure, Maryland is now one of the nation’s preeminent public research universities and on a path to become one of the world’s best. To fulfill this promise, we must capitalize on our momentum, fully exploit our competitive advantages, and pursue ambitious goals with great discipline and entrepreneurial spirit. This promise is within reach. This strategic plan is our working agenda.

The plan is comprehensive, bold, and action oriented. It sets forth a vision of the University as an institution unmatched in its capacity to attract talent, address the most important issues of our time, and produce the leaders of tomorrow. The plan will guide the investment of our human and material resources as we strengthen our undergraduate and graduate programs and expand research, outreach and partnerships, become a truly international center, and enhance our surrounding community.

Our success will benefit Maryland in the near and long term, strengthen the State’s competitive capacity in a challenging and changing environment and enrich the economic, social and cultural life of the region. We will be a catalyst for progress, the State’s most valuable asset, and an indispensable contributor to the nation’s well-being. Achieving the goals of Transforming Maryland requires broad-based and sustained support from our extended community. We ask our stakeholders to join with us to make the University an institution of world-class quality with world-wide reach and unparalleled impact as it serves the people and the state of Maryland.

Our researchers are also at the cusp of the new biology for the 21st century, with bioscience emerging as a key area in almost all CMNS disciplines. Entomologists are learning how climate change affects the behavior of insects, and earth science faculty are coupling physical and biosphere data to predict that change. Geochemists are discovering how our planet evolved to support life, and biologists and entomologists are discovering how evolutionary processes have operated in living organisms. Our biologists have learned how human generated sound affects aquatic organisms, and cell biologists and computer scientists use advanced genomics to study disease and host-pathogen interactions. Our mathematicians are modeling the spread of AIDS, while our astronomers are searching for habitable exoplanets.

Our Education

CMNS is also a national resource for educating and training the next generation of leaders. Many of our major programs are ranked among the top 10 of public research universities in the nation. CMNS offers every student a high-quality, innovative and cross-disciplinary educational experience that is also affordable. Strongly committed to making science and mathematics studies available to all, CMNS actively encourages and supports the recruitment and retention of women and minorities.

Our Students

Our students have the unique opportunity to work closely with first-class faculty in state-of-the-art labs both on and off campus, conducting real-world, high-impact research on some of the most exciting problems of modern science. 87% of our undergraduates conduct research and/or hold internships while earning their bachelor’s degree. CMNS degrees command respect around the world, and open doors to a wide variety of rewarding career options. Many students continue on to graduate school; others find challenging positions in high-tech industry or federal laboratories, and some join professions such as medicine, teaching, and law.