From The Johns Hopkins University Applied Physics Lab : “NASA’s DART Spacecraft Launches in World’s First Planetary Defense Test Mission”

The Johns Hopkins University Applied Physics Lab

From The Johns Hopkins University Applied Physics Lab

National Aeronautics Space Agency(US) DART in space depiction.

National Aeronautics and Space Administration(US) NASA Double Asteroid Redirection Test (DART) Mission (US) schematic

Lighting up the California coastline early in the morning of Nov. 24, a SpaceX Falcon 9 rocket carried NASA’s Double Asteroid Direction Test (DART) spacecraft off the planet to begin its one-way trip to crash into an asteroid.

DART — a mission designed, developed and managed by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Planetary Defense Coordination Office — is the world’s first full-scale mission to test technology for defending the planet against potential asteroid or comet hazards. The spacecraft launched Wednesday morning at 1:21 a.m. EST from Space Launch Complex 4 East at Vandenberg Space Force Base in California.

As just one part of NASA’s larger planetary defense strategy DART will send a spacecraft to impact a known asteroid that is not a threat to Earth, to slightly change its motion in a way that can be accurately measured via ground-based telescopic observations. DART will show that a spacecraft can autonomously navigate to a target asteroid and intentionally collide with it. It’s a method called kinetic impact, and the test will provide important data to help humankind better prepare for an asteroid that might post an impact hazard to Earth, should one ever be discovered.

“The Double Asteroid Redirection Test represents the best of APL’s approach to space science and engineering: identify the challenge, devise an innovative and cost-effective technical solution to address it, and work relentlessly to solve it,” said APL Director Ralph Semmel. “We are honored that NASA has entrusted APL with this critical mission, where the fate of the world really could rest on our success.”

At 2:17 a.m. EST, DART separated from the second stage of its launch vehicle. Minutes later, mission operators at APL received the first spacecraft telemetry data and started the process of orienting the spacecraft to a safe position for deploying its solar arrays. Almost two hours later, the spacecraft successfully unfurled its two 28-foot-long roll-out solar arrays. They will power both the spacecraft and NASA’s Evolutionary Xenon Thruster – Commercial (NEXT-C) ion engine, one of several technologies being tested on DART for future application on space missions.

“The DART team overcame the technical, logistical and personal challenges of a global pandemic to deliver this spacecraft to the launch pad, and I’m confident that its next step — actually deflecting an asteroid — will be just as successful,” said Mike Ryschkewitsch, head of APL’s Space Exploration Sector. “It gives me a lot of assurance that if we ever have to embark on an urgent planetary defense mission, we have the people and the playbook to make it happen.”

DART’s one-way trip is to the Didymos asteroid system, which comprises a pair of asteroids — one small, the other large — that orbit a common center of gravity. DART’s target is the asteroid moonlet Dimorphos, which is approximately 530 feet (160 meters) in diameter and orbits Didymos, which is approximately 2,560 feet (780 meters) in diameter. Since Dimorphos orbits the larger asteroid Didymos at a much slower relative speed than the pair orbits the Sun, the slight orbit change resulting from DART’s kinetic impact within the binary system can be measured much more easily than a change in the orbit of a single asteroid around the Sun.

The spacecraft will intercept the Didymos system in late September of 2022, intentionally slamming into Dimorphos at roughly 4 miles per second (6 kilometers per second) so that the spacecraft alters the asteroid’s path around Didymos. Scientists estimate the kinetic impact will shorten Dimorphos’ orbit by several minutes, and they will precisely measure that change using telescopes on Earth. The results will be used to both validate and improve scientific computer models that are critical to predicting the effectiveness of kinetic impact as a reliable method for asteroid deflection.

“It is an indescribable feeling to see something you’ve been involved with since the ‘words on paper’ stage become real and launched into space,” said Andy Cheng, one of the DART investigation leads at APL and the individual who came up with the idea of DART. “This is just the end of the first act, and the DART investigation and engineering teams have much work to do over the next year preparing for the main event — DART’s kinetic impact on Dimorphos. But tonight we celebrate!”

DART’s single instrument, the camera DRACO (Didymos Reconnaissance and Asteroid Camera for Optical navigation), will turn on a week from now and provide the first images from the spacecraft. DART will continue to travel just outside of Earth’s orbit around the Sun for the next 10 months until Didymos and Dimorphos will be a relatively close 6.8 million miles (11 million kilometers) from Earth.

A sophisticated guidance, navigation and control (GNC) system, working with algorithms developed at APL called SMART Nav (Small-body Maneuvering Autonomous Real Time Navigation) will enable the DART spacecraft to identify and distinguish between the two asteroids and then, working in concert with the other GNC elements, direct the spacecraft toward Dimorphos, all within roughly an hour of impact.

Provided by the Italian Space Agency A.S.I. – [Agenzia Spaziale Italiana] (IT), the Light Italian CubeSat for Imaging of Asteroids (LICIACube) will ride along with DART and be released prior to impact. LICIACube will then capture images of the DART impact, the resulting ejecta cloud and possibly a glimpse of the impact crater on the surface of Dimorphos. It will also look at the back side of Dimorphos, which DRACO will never have a chance to see, gathering further data to enhance the kinetic models.

8
DART team engineers lift and inspect the LICIACube CubeSat after it arrived at Johns Hopkins APL in August. The miniaturized satellite will deploy 10 days before DART’s asteroid impact, providing essential footage of the collision and subsequent plume of materials. Here, one of the solar panel arrays on the satellite’s wings is visible. Credit: Johns Hopkins APL/Ed Whitman.

9
DART team members from Johns Hopkins APL and the company Argotec, which sent members on behalf of the Italian Space Agency, carefully maneuver LICIACube into place on the DART spacecraft in a clean room at APL. LICIACube’s full integration was in early September. Credit: Johns Hopkins APL/Ed Whitman.

10
Engineers Alessandro di Paola (left) and Silvio Patruno from the company Argotec came to help install LICIACube on behalf of the Italian Space Agency. Here, they stand with the DART spacecraft and the fully installed box containing LICIACube (center) in a clean room at APL. Credit: Johns Hopkins APL/Ed Whitman.

2
APL, which manages and is building NASA’s Double Asteroid Redirection Test (DART), led the installation of NEXT-C onto the spacecraft on Nov. 10, with team members from Aerojet Rocketdyne on hand to support the process. Credit: NASA/Johns Hopkins APL/Ed Whitman.

3
The DART team lifted the thruster bracket assembly off of the assembly table and positioned it at the top of the spacecraft, a delicate and challenging move that required several team members to ensure everything went smoothly. “This took some care as the thruster’s propellant lines extended below the bottom of the bracket ring and could have been damaged if the lift was not performed properly,” said APL’s Jeremy John, lead propulsion engineer on DART. Credit: NASA/Johns Hopkins APL/Ed Whitman.

4
Once the NEXT-C thruster was safely lowered atop the spacecraft’s central cylinder, fasteners were installed to secure the thruster to the DART spacecraft. The team then connected the electrical harnesses and propellant lines between the thruster bracket assembly and the spacecraft. With DART successfully outfitted with NEXT-C, both propulsion systems are now fully installed on the spacecraft, and the next step will be to put the systems through environmental testing at APL. Credit: NASA/Johns Hopkins APL/Ed Whitman.

5
NASA’s Double Asteroid Redirection Test (DART) spacecraft sets off to collide with an asteroid in the world’s first full-scale planetary defense test mission. Riding atop a SpaceX Falcon 9 rocket, DART took off Wednesday, Nov. 24, from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Credit: NASA/Bill Ingalls.

6
Andy Cheng, a Johns Hopkins APL planetary scientist and one of the DART investigation leads, reacts after the successful launch of the DART spacecraft. Cheng was the individual who came up with the idea of DART. He watched the launch from the Mission Operations Center at APL’s Laurel, Maryland, campus. Credit: Johns Hopkins APL/Craig Weiman.

DART will be followed by Hera from The European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) in 2024

6

European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)’s Hera spacecraft depiction.

For more information about the DART mission, visit https://dart.jhuapl.edu.

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Johns Hopkins University campus

JHUAPL campus

Founded on March 10, 1942—just three months after the United States entered World War II— The Johns Hopkins University Applied Physics Lab (US) -was created as part of a federal government effort to mobilize scientific resources to address wartime challenges.

The Applied Physics Lab was assigned the task of finding a more effective way for ships to defend themselves against enemy air attacks. The Laboratory designed, built, and tested a radar proximity fuze (known as the VT fuze) that significantly increased the effectiveness of anti-aircraft shells in the Pacific—and, later, ground artillery during the invasion of Europe. The product of the Laboratory’s intense development effort was later judged to be, along with the atomic bomb and radar, one of the three most valuable technology developments of the war.

On the basis of that successful collaboration, the government, The Johns Hopkins University, and APL made a commitment to continue their strategic relationship. The Laboratory rapidly became a major contributor to advances in guided missiles and submarine technologies. Today, more than seven decades later, the Laboratory’s numerous and diverse achievements continue to strengthen our nation.

The Applied Physics Lab continues to relentlessly pursue the mission it has followed since its first day: to make critical contributions to critical challenges for our nation.

Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

The Johns Hopkins University (US) is a private research university in Baltimore, Maryland. Founded in 1876, the university was named for its first benefactor, the American entrepreneur and philanthropist Johns Hopkins. His $7 million bequest (approximately $147.5 million in today’s currency)—of which half financed the establishment of the Johns Hopkins Hospital—was the largest philanthropic gift in the history of the United States up to that time. Daniel Coit Gilman, who was inaugurated as the institution’s first president on February 22, 1876, led the university to revolutionize higher education in the U.S. by integrating teaching and research. Adopting the concept of a graduate school from Germany’s historic Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), Johns Hopkins University is considered the first research university in the United States. Over the course of several decades, the university has led all U.S. universities in annual research and development expenditures. In fiscal year 2016, Johns Hopkins spent nearly $2.5 billion on research. The university has graduate campuses in Italy, China, and Washington, D.C., in addition to its main campus in Baltimore.

Johns Hopkins is organized into 10 divisions on campuses in Maryland and Washington, D.C., with international centers in Italy and China. The two undergraduate divisions, the Zanvyl Krieger School of Arts and Sciences and the Whiting School of Engineering, are located on the Homewood campus in Baltimore’s Charles Village neighborhood. The medical school, nursing school, and Bloomberg School of Public Health, and Johns Hopkins Children’s Center are located on the Medical Institutions campus in East Baltimore. The university also consists of the Peabody Institute, Applied Physics Laboratory, Paul H. Nitze School of Advanced International Studies, School of Education, Carey Business School, and various other facilities.

Johns Hopkins was a founding member of the American Association of Universities (US). As of October 2019, 39 Nobel laureates and 1 Fields Medalist have been affiliated with Johns Hopkins. Founded in 1883, the Blue Jays men’s lacrosse team has captured 44 national titles and plays in the Big Ten Conference as an affiliate member as of 2014.

Research

The opportunity to participate in important research is one of the distinguishing characteristics of Hopkins’ undergraduate education. About 80 percent of undergraduates perform independent research, often alongside top researchers. In FY 2013, Johns Hopkins received $2.2 billion in federal research grants—more than any other U.S. university for the 35th consecutive year. Johns Hopkins has had seventy-seven members of the Institute of Medicine, forty-three Howard Hughes Medical Institute Investigators, seventeen members of the National Academy of Engineering, and sixty-two members of the National Academy of Sciences. As of October 2019, 39 Nobel Prize winners have been affiliated with the university as alumni, faculty members or researchers, with the most recent winners being Gregg Semenza and William G. Kaelin.

Between 1999 and 2009, Johns Hopkins was among the most cited institutions in the world. It attracted nearly 1,222,166 citations and produced 54,022 papers under its name, ranking No. 3 globally [after Harvard University (US) and the Max Planck Society (DE) in the number of total citations published in Thomson Reuters-indexed journals over 22 fields in America.

In FY 2000, Johns Hopkins received $95.4 million in research grants from the National Aeronautics and Space Administration (US), making it the leading recipient of NASA research and development funding. In FY 2002, Hopkins became the first university to cross the $1 billion threshold on either list, recording $1.14 billion in total research and $1.023 billion in federally sponsored research. In FY 2008, Johns Hopkins University performed $1.68 billion in science, medical and engineering research, making it the leading U.S. academic institution in total R&D spending for the 30th year in a row, according to a National Science Foundation (US) ranking. These totals include grants and expenditures of JHU’s Applied Physics Laboratory in Laurel, Maryland.

The Johns Hopkins University also offers the “Center for Talented Youth” program—a nonprofit organization dedicated to identifying and developing the talents of the most promising K-12 grade students worldwide. As part of the Johns Hopkins University, the “Center for Talented Youth” or CTY helps fulfill the university’s mission of preparing students to make significant future contributions to the world. The Johns Hopkins Digital Media Center (DMC) is a multimedia lab space as well as an equipment, technology and knowledge resource for students interested in exploring creative uses of emerging media and use of technology.

In 2013, the Bloomberg Distinguished Professorships program was established by a $250 million gift from Michael Bloomberg. This program enables the university to recruit fifty researchers from around the world to joint appointments throughout the nine divisions and research centers. Each professor must be a leader in interdisciplinary research and be active in undergraduate education. Directed by Vice Provost for Research Denis Wirtz, there are currently thirty two Bloomberg Distinguished Professors at the university, including three Nobel Laureates, eight fellows of the American Association for the Advancement of Science (US), ten members of the American Academy of Arts and Sciences, and thirteen members of the National Academies.