From University of Sydney (AU) via Science Alert (US) : “Mysterious Flashing Radio Signal Coming From Center of The Galaxy Scientists Report”

U Sidney bloc

From University of Sydney (AU)

via

ScienceAlert

Science Alert (US)

13 OCTOBER 2021
MICHELLE STARR

1
Artist’s impression of the radio signal. (Sebastian Zentilomo/University of Sydney.)

As our eyes on the sky grow ever more sensitive, we’re going to find more and more things we’ve never seen before.

Such is the case for a newly discovered source of radio signals, located not far from the center of the galaxy. It’s called ASKAP J173608.2-321635, and astronomers have been unable to figure out what kind of cosmic object best fits its weird properties.

“We have presented the discovery and characterization of ASKAP J173608.2-321635: a highly-polarized, variable radio source located near the Galactic Center and with no clear multi-wavelength counterpart,” explains a team of astronomers led by Ziteng Wang of the University of Sydney in Australia.

“ASKAP J173608.2-321635 may represent part of a new class of objects being discovered through radio imaging surveys.”


Signals From Space.

ASKAP J173608.2-32163 was discovered using the Australian Square Kilometre Array Pathfinder (ASKAP), one of the most sensitive radio telescopes ever built, designed to peer deep into the radio Universe.

It’s already proven adept at finding things we have never seen before, such as Odd Radio Circles (we don’t know what those are, yet), undiscovered galaxies, and mysterious fast radio bursts.

ASKAP J173608.2-32163 might turn out to be a known type of cosmic object, but if it does, it could end up stretch the definition of whatever object that is.

“We’ve never seen anything like it,” Wang says.

It’s highly variable, emitting radio waves for weeks at a time, and then disappearing on rapid timescales. The signal is also highly polarized – that is, the orientation of the oscillation of the electromagnetic wave is twisted, both linearly and circularly.

ASKAP J173608.2-32163 is also quite a tricky beast to spot. The object, whatever it is, had not been seen before the ASKAP detections, made during a pilot survey of the sky to look for transient radio sources. Between April 2019 and August 2020, the signal appeared in the data 13 times.

Follow-up observations in April and July of 2020 using a different radio telescope, Murriyang in Parkes, Australia, yielded nothing. But the MeerKAT radio telescope in South Africa got a hit, in February 2021. The Australia Telescope Compact Array (ATCA) also made a detection in April 2021.

This supports and validates the ASKAP detections, but also suggests that the source is quite elusive – there were no MeerKAT or ATCA detections prior to that date. Nor did the source appear in X-ray and near-infrared observations, nor in archives of radio data collected by multiple instruments that the researchers checked.

Which leaves a pretty fascinating mystery. The polarization suggests scattering and magnetization, possibly partially due to dust and magnetic fields in the interstellar medium between us and the source, although it’s possible that the source itself is also highly magnetized.

All up, it’s really hard to figure out what the source might be. There are several types of stars that are known to vary in radio wavelengths, such as stars that flare frequently, or close binaries with active chromospheres, or that eclipse each other. The non-detection in X-ray and near-infrared wavelengths makes this unlikely though.

Flaring stars usually have X-ray emission that corresponds to the radio emission, and the vast majority of stars have ratios of near-infrared emission that should be detectable.

Nor is a pulsar likely: a type of neutron star with sweeping beams of radio light, like a cosmic lighthouse. Pulsars have regular periodicity, on a timescale of hours, and ASKAP J173608.2-32163 was detected fading, which is inconsistent with pulsars. Also, there was a three-month span with no detections, which is also inconsistent with pulsars.

X-ray binaries, gamma-ray bursts, and supernovae were also all ruled out.

However, the object does share some properties with a type of mysterious signal spotted near the galactic center. These are known as Galactic Center Radio Transients (GCRT), three of which were identified in the 2000s, and more of which are awaiting confirmation.

These sources are also yet to be explained, but they have several features in common with ASKAP J173608.2-32163.

If ASKAP J173608.2-32163 is a GCRT, ASKAP’s detection could help us find more such sources, and figure out what they are.

“Given that ASKAP J173608.2-321635 is typically not detected and can turn off on timescales from several weeks to as quickly as a day, our sparse sampling (12 epochs over 16 months) suggests that there could be other similar sources in these fields,” the researchers write.

“Increasing the survey cadence and comparing the results of this search to other regions will help us understand how truly unique ASKAP J173608.2-321635 is and whether it is related to the Galactic plane, which should ultimately help us deduce its nature.”

The findings are reported in The Astrophysical Journal.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

University of Sydney (AU)
Our founding principle as Australia’s first university,University of Sydney (AU) was that we would be a modern and progressive institution. It’s an ideal we still hold dear today.

When Charles William Wentworth proposed the idea of Australia’s first university in 1850, he imagined “the opportunity for the child of every class to become great and useful in the destinies of this country”.

We’ve stayed true to that original value and purpose by promoting inclusion and diversity for the past 160 years.

It’s the reason that, as early as 1881, we admitted women on an equal footing to male students. The University of Oxford (UK) didn’t follow suit until 30 years later, and Jesus College at The University of Cambridge (UK) did not begin admitting female students until 1974.

It’s also why, from the very start, talented students of all backgrounds were given the chance to access further education through bursaries and scholarships.

Today we offer hundreds of scholarships to support and encourage talented students, and a range of grants and bursaries to those who need a financial helping hand.

The University of Sydney is an Australian public research university in Sydney, Australia. Founded in 1850, it is Australia’s first university and is regarded as one of the world’s leading universities. The university is known as one of Australia’s six sandstone universities. Its campus, spreading across the inner-city suburbs of Camperdown and Darlington, is ranked in the top 10 of the world’s most beautiful universities by the British Daily Telegraph and the American Huffington Post.The university comprises eight academic faculties and university schools, through which it offers bachelor, master and doctoral degrees.

The QS World University Rankings ranked the university as one of the world’s top 25 universities for academic reputation, and top 5 in the world and first in Australia for graduate employability. It is one of the first universities in the world to admit students solely on academic merit, and opened their doors to women on the same basis as men.

Five Nobel and two Crafoord laureates have been affiliated with the university as graduates and faculty. The university has educated seven Australian prime ministers, two governors-general of Australia, nine state governors and territory administrators, and 24 justices of the High Court of Australia, including four chief justices. The university has produced 110 Rhodes Scholars and 19 Gates Scholars.

The University of Sydney (AU) is a member of The Group of Eight (AU), CEMS, The Association of Pacific Rim Universities and The Association of Commonwealth Universities.