From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “How to force photons to never bounce back”

From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

13.10.21
Florent Hiard

EPFL scientists have developed a topology-based method that forces microwave photons to travel along a one way path, despite unprecedented levels of disorder and obstacles on their way. This discovery paves the way to a new generation of high-frequency circuits and extremely robust, compact communication devices.

1

Topological insulators are materials whose structure forces photons and electrons to move only along the material’s boundary and only in one direction. These particles experience very little resistance and travel freely past obstacles such as impurities, fabrication defects, a change of signal’s trajectory within a circuit, or objects placed intentionally in the particles’ path. That’s because these particles, instead of being reflected by the obstacle, go around it “like river-water flowing past a rock,” says Prof. Romain Fleury, head of EPFL’s Laboratory of Wave Engineering, within the School of Engineering.

Until now, these particles’ exceptional resilience to obstacles applied only to limited perturbations in the material, meaning this property couldn’t be exploited widely in photonics-based applications. However, that could soon change thanks to research being conducted by Prof. Fleury along with his PhD student Zhe Zhang and Pierre Delplace from the Lyon Physics Laboratory [Laboratoire de Physique ENS de Lyon](FR). Their study, appearing in the renowned journal Nature, introduces a topological insulator in which the transmission of microwave photons can survive unprecedented levels of disorder.

“We were able to create a rare topological phase that can be characterized as an anomalous topological insulator. This phase arises from the mathematical properties of unitary groups and gives the material unique – and unexpected – transmission properties,” says Zhang.

This discovery holds great promise for new advances in science and technology. “When engineers design hyperfrequency circuits, they have to be very careful to make sure that waves are not reflected but rather guided along a given path and through a series of components. That’s the first thing I teach my electrical engineering students,” says Prof. Fleury. “This intrinsic constraint, known as impedance matching, limits our ability to manipulate wave signals. However, with our discovery, we can take a completely different approach, by using topology to build circuits and devices without having to worry about impedance matching – a factor that currently restricts the scope of modern technology.”

2
Topological isolators with reconfigurable functionality © Zhe Zhang / EPFL 2021.

Prof. Fleury’s lab is now working on concrete applications for their new topological insulator. “These types of topological circuits could be extremely useful for developing next-generation communication systems,” he says. “Such systems require circuits that are highly reliable and easily reconfigurable.” His research group is also looking at how the discovery could be used for developing new kinds of photonic processors and quantum computers.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

EPFL bloc

EPFL campus

The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

Organization

EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

School of Basic Sciences (SB, Jan S. Hesthaven)

Institute of Mathematics (MATH, Victor Panaretos)
Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
Institute of Physics (IPHYS, Harald Brune)
European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
Bernoulli Center (CIB, Nicolas Monod)
Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
Swiss Plasma Center (SPC, Ambrogio Fasoli)
Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

School of Engineering (STI, Ali Sayed)

Institute of Electrical Engineering (IEL, Giovanni De Micheli)
Institute of Mechanical Engineering (IGM, Thomas Gmür)
Institute of Materials (IMX, Michaud Véronique)
Institute of Microengineering (IMT, Olivier Martin)
Institute of Bioengineering (IBI, Matthias Lütolf)

School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

Institute of Architecture (IA, Luca Ortelli)
Civil Engineering Institute (IIC, Eugen Brühwiler)
Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
Environmental Engineering Institute (IIE, David Andrew Barry)

School of Computer and Communication Sciences (IC, James Larus)

Algorithms & Theoretical Computer Science
Artificial Intelligence & Machine Learning
Computational Biology
Computer Architecture & Integrated Systems
Data Management & Information Retrieval
Graphics & Vision
Human-Computer Interaction
Information & Communication Theory
Networking
Programming Languages & Formal Methods
Security & Cryptography
Signal & Image Processing
Systems

School of Life Sciences (SV, Gisou van der Goot)

Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
Brain Mind Institute (BMI, Carmen Sandi)
Institute of Bioengineering (IBI, Melody Swartz)
Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
Global Health Institute (GHI, Bruno Lemaitre)
Ten Technology Platforms & Core Facilities (PTECH)
Center for Phenogenomics (CPG)
NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

College of Management of Technology (CDM)

Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
Section of Financial Engineering (CDM-IF, Julien Hugonnier)

College of Humanities (CDH, Thomas David)

Human and social sciences teaching program (CDH-SHS, Thomas David)

EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

In addition to the eight schools there are seven closely related institutions

Swiss Cancer Centre
Center for Biomedical Imaging (CIBM)
Centre for Advanced Modelling Science (CADMOS)
École cantonale d’art de Lausanne (ECAL)
Campus Biotech
Wyss Center for Bio- and Neuro-engineering
Swiss National Supercomputing Centre