From Jülich Research Centre [Forschungszentrum Jülichs] (FZJ)(DE): “Quantum Microscope Made in Jülich”

From Jülich Research Centre [Forschungszentrum Jülichs] (FZJ)(DE)

31 August 2021

Contact:
Prof. Dr. Ruslan Temirov
Research group leader “Low temperature scanning probe microscopy”
Peter Grünberg Institute, Quantum Nanoscience (PGI-3)
Tel: +49 2461 61-3462
r.temirov@fz-juelich.de

Prof. Dr. F. Stefan Tautz
Head of the Peter Grünberg Institute, Quantum Nanoscience (PGI-3)
Tel: + 49 2461 61-4561
s.tautz@fz-juelich.de

Press contact:
Tobias Schlößer
Press officer, Forschungszentrum Jülich
Tel: +49 2461 61-4771
t.schloesser@fz-juelich.de

Physicists at Forschungszentrum Jülich have developed a unique scanning tunnelling microscope with magnetic cooling to study quantum effects.

Scanning tunnelling microscopes capture images of materials with atomic precision and can be used to manipulate individual molecules or atoms. Researchers have been using the instruments for many years to explore the world of nanoscopic phenomena. A new approach by physicists at Forschungszentrum Jülich is now creating new possibilities for using the devices to study quantum effects. Thanks to magnetic cooling the scanning tunnelling microscope works without any moving parts and is almost vibration-free at extremely low temperatures as low as 30 millikelvin. The instrument can help researchers unlock the exceptional properties of quantum materials, which are crucial for the development of quantum computers and sensors.

1
Prof. Stefan Tautz (left below), Dr Taner Esat (left above) and Prof. Ruslan Temirov (right) at the Jülich quantum microscope. © Sascha Kreklau/ Forschungszentrum Jülich.

Physicists consider the temperature range near absolute zero to be a particularly exciting area for research. Thermal fluctuations are reduced to a minimum. The laws of quantum physics come into play and reveal special properties of materials. Electric current then flows freely without any resistance. Another example is a phenomenon called superfluidity: Individual atoms fuse into a collective state and move past each other without friction.

These extremely low temperatures are also required to research and harness quantum effects for quantum computing. Researchers worldwide as well as at Forschungszentrum Jülich are currently pursuing this goal at full speed. Quantum computers could be far superior to conventional supercomputers for certain tasks. However, development is still in its infancy. A key challenge is finding materials and processes that make complex architectures with stable quantum bits possible.

“I believe a versatile microscope like ours is the tool of choice for this fascinating task, because it enables matter to be visualized and manipulated at the level of individual atoms and molecules in many different ways,” explains Ruslan Temirov from Forschungszentrum Jülich.

Over years of work, he and his team have equipped a scanning tunnelling microscope with magnetic cooling for this purpose. “Our new microscope differs from all the others in a similar way to how an electric car differs from a vehicle with a combustion engine,” explains the Jülich physicist. Until now, researchers have relied on a kind of liquid fuel, a mixture of two helium isotopes, to bring microscopes to such low temperatures. “During operation, this cooling mixture circulates continuously through thin pipes, which leads to increased background noise,” says Temirov.

The cooling device of Jülich’s microscope, on the other hand, is based on the process of adiabatic demagnetization. The principle is not new. It was used in the 1930s to reach temperatures below 1 kelvin in the laboratory for the first time. For the operation of microscopes, it has several advantages, says Ruslan Temirov: “With this method, we can cool our new microscope just by changing the strength of the electric current passing through an electromagnetic coil. Thus, our microscope has no moving parts and is practically vibration-free.”

The Jülich scientists are the first ever to have constructed a scanning tunneling microscope using this technique. “The new cooling technology has several practical advantages. Not only does it improve the imaging quality, but the operation of the whole instrument and the entire setup are simplified,” says institute director Stefan Tautz. Thanks to its modular design, the Jülich quantum microscope also remains open to technical advances, he adds, as upgrades can be easily implemented.

“Adiabatic cooling is a real quantum leap for scanning tunneling microscopy. The advantages are so significant that we are now developing a commercial prototype as our next step,” Stefan Tautz explains. Quantum technologies are currently the focus of much research. The interest of many research groups in such an instrument is therefore assured.

Science paper:
Review of Scientific Instruments

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Jülich Research Centre[Forschungszentrum Jülich] is a member of the Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren ](DE) and is one of the largest interdisciplinary research centres in Europe. It was founded on 11 December 1956 by the state of North Rhine-Westphalia as a registered association, before it became “Kernforschungsanlage Jülich GmbH” or Nuclear Research Centre Jülich in 1967. In 1990, the name of the association was changed to “Forschungszentrum Jülich GmbH”. It has close collaborations with RWTH Aachen in the form of Jülich-Aachen Research Alliance (JARA).

Jülich Research Centre [Forschungszentrum Jülichs](FZJ)(DE) is situated in the middle of the Stetternich Forest in Jülich (Kreis Düren, Rheinland) and covers an area of 2.2 square kilometres.

Jülich Research Centre [Forschungszentrum Jülichs](FZJ)(DE) employs more than 5,700 members of staff (2015) and works within the framework of the disciplines physics, chemistry, biology, medicine and engineering on the basic principles and applications in the areas of health, information, environment and energy. Amongst the members of staff, there are approx. 1,500 scientists including 400 PhD students and 130 diploma students. Around 600 people work in the administration and service areas, 500 work for project management agencies, and there are 1,600 technical staff members, while around 330 trainees are completing their training in more than 20 professions.

More than 800 visiting scientists come to Forschungszentrum Jülich every year from about 50 countries.