From University of Hawai’i-Manoa (US) : “Unparalleled bounty of oscillating red giant stars detected”

From University of Hawai’i-Manoa (US)

August 4, 2021

Illustration of red giant stars near and far sweeping across the sky. Credit: Chris Smith (KBRwyle) NASA’s Goddard Space Flight Center (US).

An unprecedented collection of pulsating giant red stars has been identified by astronomers at the University of Hawaiʻi-Manoa Institute for Astronomy (IfA)(US). Using observations from NASA’s Transiting Exoplanet Survey Satellite (TESS), the researchers detected the stars, whose rhythms arise from internal sound waves and provide the opening chords of a symphonic exploration of our galactic neighborhood.
National Aeronautics Space Agency (US)/Massachusetts Institute of Technology (US) TESS

NASA/MIT Tess in the building.

National Aeronautics Space Agency (US)/Massachusetts Institute of Technology(US) TESS – Transiting Exoplanet Survey Satellite replaced the Kepler Space Telescope in search for exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by Massachusetts Institute of Technology (US), and managed by NASA’s Goddard Space Flight Center (US).

Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics – Harvard and Smithsonian; MIT Lincoln Laboratory; and the NASA Space Telescope Science Institute (US) in Baltimore.


Since its launch in 2018, TESS has primarily hunted for exoplanets–worlds beyond our solar system. But its sensitive measurements of changing stellar brightness make the telescope ideal for observing stellar oscillations or material within the internal structure of stars. It’s an area of research called asteroseismology.

“Our initial result, using only a month of stellar measurements from TESS’s first two years, shows that we can determine the masses and sizes of these oscillating giants with high precision that will only improve as TESS goes on,” said Marc Hon, a NASA Hubble Fellow at IfA. “What’s really unparalleled is that TESS’s broad coverage allows us to make these measurements uniformly across almost the entire sky.”

This large bounty of oscillating red giants will be used for unprecedented detailed studies using the ground-based telescopes on Maunakea.

“We have already started follow-up observations of some of the most intriguing oddballs we have uncovered in our large TESS dataset, which will tell us more about their origin,” said Hon. “We have just scratched the surface of the treasure trove of data enabled by TESS.”

Hon presented the research on Wednesday during the TESS Science Conference, an event held virtually, August 2–6 and supported by the Massachusetts Institute of Technology (US) in Cambridge, where scientists discuss the latest results of the mission. He is the lead author of the study that is accepted for publication in The Astrophysical Journal, with co-authors including fellow IfA colleagues Jamie Tayar and Daniel Huber.

Widening opportunities

TESS has identified more than 158,000 pulsating red giants over nearly the entire sky. Credit: NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle).

Oscillations in the Sun were first observed in the 1960s. But solar-like oscillations in thousands of stars weren’t detected until the French-led Convection, Rotation and Planetary Transits space telescope, which operated from 2006 to 2013. NASA’s Kepler and K2 missions, which surveyed from 2009 to 2018, found tens of thousands of oscillating giants. TESS is expanding access to these oscillations through its observations in space.

NASA Kepler Space Telescope (US).

“With a sample this large, giants that might occur only one percent of the time become pretty numerous,” said Tayar, a Hubble Postdoctoral Fellow at IfA. “Now we can start thinking about finding even rarer stars.”

TESS monitors large swaths of the sky for about a month at a time using its four cameras, covering about 75% of the sky during its two-year primary mission. Each camera captures a full image 24-by-24 degrees (48 times the size of the Moon in our sky) across, every 30 minutes. Since late summer 2020, the cameras have been collecting these images at an even faster rate.

The images are used to generate light curves—graphs of changing brightness—for nearly 24 million stars, each spanning 27 days, the length of time TESS stares at one patch of the sky. To sift through this immense accumulation of measurements, Hon and his colleagues taught a computer how to recognize pulsating giants. The team used machine learning, a form of artificial intelligence that trains computers to make decisions based on general patterns without explicitly programming them.

To train the system, the team used Kepler light curves for more than 150,000 stars, of which about 20,000 were oscillating red giants. When the neural network finished processing all of the TESS data, it had identified 158,505 pulsating giants.

The team determined colors and distances for each giant using data from the European Space Agency’s Gaia mission, and plotted the masses of these stars across the sky. A fundamental prediction in galactic astronomy is that younger, higher-mass stars should lie closer to the plane of the galaxy, marked by the high density of stars that create the glow of the Milky Way in the night sky.

“Our map demonstrates for the first time that this is indeed the case across nearly the whole sky,” said Huber. “With the help of Gaia, TESS has now given us tickets to a red giant concert in the sky.”

European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) GAIA satellite

This research is an example of UH Mānoa’s goal of Excellence in Research: Advancing the Research and Creative Work Enterprise, one of four goals identified in the 2015–25 Strategic Plan, updated in December 2020.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

System Overview

The University of Hawai‘i (US) includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

The University of Hawaiʻi system, formally the University of Hawaiʻi (US) is a public college and university system that confers associate, bachelor’s, master’s, and doctoral degrees through three university campuses, seven community college campuses, an employment training center, three university centers, four education centers and various other research facilities distributed across six islands throughout the state of Hawaii in the United States. All schools of the University of Hawaiʻi system are accredited by the Western Association of Schools and Colleges. The U.H. system’s main administrative offices are located on the property of the University of Hawaiʻi at Mānoa in Honolulu CDP.

The University of Hawaiʻi-Mānoa (US) is the flagship institution of the University of Hawaiʻi (US) system. It was founded as a land-grant college under the terms of the Morrill Acts of 1862 and 1890. Programs include Hawaiian/Pacific Studies, Astronomy, East Asian Languages and Literature, Asian Studies, Comparative Philosophy, Marine Science, Second Language Studies, along with Botany, Engineering, Ethnomusicology, Geophysics, Law, Business, Linguistics, Mathematics, and Medicine. The second-largest institution is the University of Hawaiʻi at Hilo on the “Big Island” of Hawaiʻi, with over 3,000 students. The University of Hawaiʻi-West Oʻahu in Kapolei primarily serves students who reside in Honolulu’s western and central suburban communities. The University of Hawaiʻi Community College system comprises four community colleges island campuses on O’ahu and one each on Maui, Kauaʻi, and Hawaiʻi. The schools were created to improve accessibility of courses to more Hawaiʻi residents and provide an affordable means of easing the transition from secondary school/high school to college for many students. University of Hawaiʻi education centers are located in more remote areas of the State and its several islands, supporting rural communities via distance education.

Research facilities

Center for Philippine Studies
Cancer Research Center of Hawaiʻi
East-West Center
Haleakalā Observatory
Hawaiʻi Natural Energy Institute
Institute for Astronomy
Institute of Geophysics and Planetology
Institute of Marine Biology
Lyon Arboretum
Mauna Kea Observatory
W. M. Keck Observatory
Waikīkī Aquarium

The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth.

The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the island of Hawai’i feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.