From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Midgard – a paradigm shift in data center technology”

From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

1
©stock.adobe.com

EPFL researchers have pioneered an innovative approach to implementing virtual memory in data centers, which will greatly increase server efficiency.

As big data, used by everything from AI to the Internet of Things, increasingly dominates our modern lives, cloud computing has grown massively in importance. It relies heavily on the use of virtual memory with one data server running many services for many different customers all at the same time, using virtual memory to process these services and to keep each customer’s data secure from the others.

However, the way this virtual memory is deployed dates back to the 1960’s, and the fact that memory capacity is always increasing is actually beginning to slow things down. For example, data centers that provide services such as social networks or business analytics spend more than 20% of their processing time in virtual memory and protection checks. That means that any gains made in this area will represent a huge benefit in efficiency.

Midgard: saving energy in the cloud

Now, researchers working with EPFL’s Ecocloud Center for Sustainable Cloud Computing, have developed Midgard, a software-modelled prototype demonstrating proof of concept to greatly increase server efficiency. Their research paper, Rebooting Virtual Memory with Midgard, has just been presented at ISCA’21, the world’s flagship conference in computer architecture, and is the first of several steps to demonstrate a fully working system.

“Midgard is a technology that can allow for growing memory capacity, while continuing to guarantee the security of the data of each user in the cloud services,” explains Professor Babak Falsafi, Founding Director of the Ecocloud Center and one of the paper’s authors. “With Midgard, the all-important data lookups and protection checks are done directly in on-chip memory rather than virtual memory, removing so much of the traditional hierarchy of lookups and translations that it scores a net gain in efficiency, even as more memory is deployed,” he continued.

In recent testing at low loads, the Midgard system was 5% behind standard performance, but at loads of 256 MB aggregate large cache it was able to outperform traditional systems in terms of virtual memory overheads.

An outstanding feature of Midgard technology is that, while it does represent a paradigm shift, it is compatible with existing operating systems such as Windows, MacOS and Linux. Future work will address the wide spectrum of topics needed to realize Midgard in real systems, such as compatibility development, packaging strategies and maintenance plans.

For more information about Midgard click here.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

EPFL bloc

EPFL campus

The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

Organization

EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

School of Basic Sciences (SB, Jan S. Hesthaven)

Institute of Mathematics (MATH, Victor Panaretos)
Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
Institute of Physics (IPHYS, Harald Brune)
European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
Bernoulli Center (CIB, Nicolas Monod)
Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
Swiss Plasma Center (SPC, Ambrogio Fasoli)
Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

School of Engineering (STI, Ali Sayed)

Institute of Electrical Engineering (IEL, Giovanni De Micheli)
Institute of Mechanical Engineering (IGM, Thomas Gmür)
Institute of Materials (IMX, Michaud Véronique)
Institute of Microengineering (IMT, Olivier Martin)
Institute of Bioengineering (IBI, Matthias Lütolf)

School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

Institute of Architecture (IA, Luca Ortelli)
Civil Engineering Institute (IIC, Eugen Brühwiler)
Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
Environmental Engineering Institute (IIE, David Andrew Barry)

School of Computer and Communication Sciences (IC, James Larus)

Algorithms & Theoretical Computer Science
Artificial Intelligence & Machine Learning
Computational Biology
Computer Architecture & Integrated Systems
Data Management & Information Retrieval
Graphics & Vision
Human-Computer Interaction
Information & Communication Theory
Networking
Programming Languages & Formal Methods
Security & Cryptography
Signal & Image Processing
Systems

School of Life Sciences (SV, Gisou van der Goot)

Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
Brain Mind Institute (BMI, Carmen Sandi)
Institute of Bioengineering (IBI, Melody Swartz)
Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
Global Health Institute (GHI, Bruno Lemaitre)
Ten Technology Platforms & Core Facilities (PTECH)
Center for Phenogenomics (CPG)
NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

College of Management of Technology (CDM)

Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
Section of Financial Engineering (CDM-IF, Julien Hugonnier)

College of Humanities (CDH, Thomas David)

Human and social sciences teaching program (CDH-SHS, Thomas David)

EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

In addition to the eight schools there are seven closely related institutions

Swiss Cancer Centre
Center for Biomedical Imaging (CIBM)
Centre for Advanced Modelling Science (CADMOS)
École cantonale d’art de Lausanne (ECAL)
Campus Biotech
Wyss Center for Bio- and Neuro-engineering
Swiss National Supercomputing Centre