From GFZ German Research Centre Helmholtz Centre for Geosciences Potsdam: “Continental pirouettes”

From GFZ German Research Centre Helmholtz Centre for Geosciences Potsdam


The plates of the Earth’s crust perform complicated movements that can be attributed to quite simple mechanisms. That is the short version of the explanation of a rift that began to tear the world apart over a length of several thousand kilometers 105 million years ago. The scientific explanation appears today in the journal Nature Geoscience.

According to the paper, a super volcano split the Earth’s crust over a length of 7,500 kilometers, pushing the Indian Plate away from the African Plate. The cause was a “plume” in the Earth’s mantle, i.e. a surge of hot material that wells upwards like an atomic mushroom cloud in super slow motion. It has long been known that the Indian landmass thus made its way northward and bumped into Eurasia. But a seemingly counterintuitive east-west movement of the continental plates was also part of the process. This is supported by calculations by a team led by Dutch scientist Douwe van Hinsbergen (Utrecht University [ Universiteit Utrecht] (NL)) and Bernhard Steinberger (GFZ German Research Centre for Geosciences).

According to the findings, the Indian Plate did not simply move away from Africa, but rotated in the process. The reason for this is the subcontinent, whose land mass acts on the much larger continental plate like an axis around which the entire plate rotates. In the south, the scissors opened, in the north they closed – there, mountain-building processes and the subduction of crustal plates were induced.

This has dramatic effects up to the present time: The subduction processes continue and trigger earthquakes again and again in the Mediterranean region between Cyprus and Turkey. The traces of the plume and the supervolcano can still be identified today. They are flood basalts on Madagascar and in the southwest of India. They testify to immense volcanic activity fed by the mantle plume.

Bernhard Steinberger has calculated the movement and pressure that the super volcano near present-day Madagascar could cause further north on the Arabian Peninsula and in what is now the Mediterranean. He has also published a “kitchen table experiment on Youtube” which illustrates the movements.

See the full article here.


Please help promote STEM in your local schools.

Stem Education Coalition

Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ

The Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences

Our vision

The future can only be secured by those who understand the System Earth and its interactions with Man: We develop a profound understanding of systems and processes of the solid Earth together with strategies and options for action to address global change and its regional impacts, to understand natural hazards and to minimize associated risks, as well as to assess the human impact on System Earth.
Earth System Science for the Future

The GFZ is Germany’s national research center for the solid Earth Sciences. Our mission is to deepen the knowledge of the dynamics of the solid Earth, and to develop solutions for grand challenges facing society. These challenges include anticipating the hazards arising from the Earth’s dynamic systems and mitigating the associated risks to society; securing our habitat under the pressure of global change; and supplying energy and mineral resources for a rapidly growing population in a sustainable manner and without harming the environment.

These challenges are inextricably linked with the dynamics of planet Earth, not just the solid Earth and the surface on which we live, but also the hydrosphere, atmosphere, and biosphere, and the chemical, physical, and biological processes that connect them. Hence, we view our planet as a system with interacting components. We investigate the structure and history of the Earth, its properties, and the dynamics of its interior and surface, and we use our fundamental understanding to develop solutions needed to maintain planet Earth as a safe and supportive habitat.

Our expertise

In pursuit of our mission, we have developed a comprehensive spectrum of expertise in geodesy, geophysics, geology, mineralogy, geochemistry, physics, geomorphology, geobiosciences, mathematics, and engineering. This is complemented by our deep methodological and technological knowhow and innovation. We are responsible for the long-term operation of expansive instrument networks, arrays and observatories, as well as data and analytical infrastructures. To accomplish our large-scale tasks, we have established MESI, the worldwide unique Modular Earth Science Infrastructure.

Our research is organized in a matrix structure, with disciplinary competences grouped in four scientific departments. The departments guarantee the development and continuity of disciplinary skills, methods, and infrastructures. This is an indispensable foundation for our ability to engage with evolving scientific insights, new technologies, and unexpected, pressing challenges of societal relevance.

The grand challenges and the complexity of system Earth on the other hand, require a close multidisciplinary interaction and integration across scientific competence fields to secure advances in understanding and solutions. For these reasons, and to achieve our scientific mission, we coordinate our research via five Research Units (RU) that foster the required long-term research collaborations and that transcend the organizational / management units. These five RUs are:

Global Processes – Integrated monitoring and modelling: How are linked processes controlling the global dynamics of the Earth and change in the Earth System?

Plate Boundary Systems – Understanding the dynamics that affect the human habitat: How do the dynamic processes of the solid Earth’s most dynamic systems function and how do they control related hazards and resource formation?

Earth Surface and Climate Interactions – Probing records to constrain mechanisms and sensitivities: How does climate change today and in the past affect the Earth surface and how do surface processes, in turn, influence the atmosphere and climate?

Natural Hazards – Understanding risks and safeguarding the human habitat: How can we better predict and understand natural hazards, their dynamics, and their consequences?

Georesources and Geoenergy – Raw materials and contributions to the energy transition: How can georesources and the geological subsurface be used in a sustainable way?