From University of Toronto (CA) and From University of British Columbia (CA) via National Radio Astronomy Observatory (US) : “Molecular Gas in High Redshift Galaxies”

From University of Toronto (CA)


U British Columbia bloc

From University of British Columbia (CA)


NRAO Banner

National Radio Astronomy Observatory (US)

Jeff Shen (University of Toronto) and Allison Man (University of British Columbia)

White circles in this HST composite color image show the target galaxies at z = 2.9. There are several projected images for some of the galaxies (e.g., 2.a, 2.b and 2.c are three images of the same background galaxy). This effect is caused by gravitational lensing. Blue line indicates the lensing model’s critical line, across which galaxy images are reflected. Adapted from Shen et al. 2021.

To obtain a complete picture of star formation and galaxy evolution, we must look to high-redshift galaxies in the early Universe. They hold the key to understanding how the galaxies of the past become the galaxies of the present. A crucial epoch is the so-called cosmic noon from z = 2 to 3, when star formation peaked. (Madau and Dickinson 2014). Understanding star formation at these redshifts is often done by observing the carbon monoxide molecule (CO), a tracer for cold gas, which is the immediate fuel for forming stars. This is typically done with powerful radio telescopes. Our team used ALMA to make observations of the CO(3-2) transition in several galaxies at z = 2.9 (Shen et al. 2021; see figure).

Given that galaxies in the early Universe are very distant, CO observations at these redshifts tend to be biased toward the most extremely star-forming galaxies which harbor large reserves of molecular gas. We use gravitational lensing, whereby a massive foreground galaxy cluster between Earth and the target galaxies magnifies the incoming light from the target galaxies. This allows us to observe galaxies, previously identified in other wavelengths (Borys et al. 2004, Mackenzie et al. 2014), which are far less bright and massive than is typically observed in galaxies at comparable redshifts. To determine the gas mass, we need to convert our CO(3-2) observation into a CO(1-0) equivalent, which introduces significant systematic uncertainty. In the case of the most magnified galaxy, we find gas masses that are an order of magnitude below the typical gas masses of z > 1 galaxies from the literature. This analysis of more “normal” galaxies (i.e., representative of the general galaxy population) is made possible by the fortuitous lensing of the target galaxies, but in the future the ngVLA may make these kinds of observations commonplace.

The ngVLA would allow for phenomenally detailed observations of cold gas in distant galaxies. With its long baselines, the ngVLA will be able to spatially resolve molecular gas in early galaxies, allowing us to characterize the gas dynamics and obtain virial mass estimates. Additionally, the ngVLA will be able to directly observe the CO(1-0) line, avoiding the uncertainty associated with the conversion from a higher J transition (Casey et al. 2015). These observations will be possible at sensitivities better than ever before, and perhaps more excitingly, it will be possible to detect CO(1-0) across a large range of redshifts, allowing for a more comprehensive view of galaxies through time (Decarli et al. 2018).

Since 2015, the acronym ngVLA has appeared in 700+ publications indexed in the SAO/NASA Astrophysics Data System. This article continues a regular feature intended to highlight some of those publications. We are especially interested in showcasing work done by early-career researchers.

Received via email, so no link.


Please help promote STEM in your local schools.

Stem Education Coalition

Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

*The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

U British Columbia Campus

The University of British Columbia (CA) is a global centre for research and teaching, consistently ranked among the 40 best universities in the world. Since 1915, UBC’s West Coast spirit has embraced innovation and challenged the status quo. Its entrepreneurial perspective encourages students, staff and faculty to challenge convention, lead discovery and explore new ways of learning. At UBC, bold thinking is given a place to develop into ideas that can change the world.

The University of British Columbia (UBC) is a public research university with campuses in Vancouver and Kelowna, British Columbia. Established in 1908, UBC is British Columbia’s oldest university. The university ranks among the top three universities in Canada. With an annual research budget of $600 million, UBC funds over 8,000 projects a year.

The Vancouver campus is situated adjacent to the University Endowment Lands located about 10 km (6 mi) west of downtown Vancouver. UBC is home to TRIUMF, Canada’s national laboratory for particle and nuclear physics, which houses the world’s largest cyclotron. In addition to the Peter Wall Institute for Advanced Studies and Stuart Blusson Quantum Matter Institute, UBC and the Max Planck Society (DE) collectively established the first Max Planck Institute in North America, specializing in quantum materials. One of the largest research libraries in Canada, the UBC Library system has over 9.9 million volumes among its 21 branches. The Okanagan campus, acquired in 2005, is located in Kelowna, British Columbia.

Eight Nobel laureates, 71 Rhodes scholars, 65 Olympians, ten fellows in both American Academy of Arts & Sciences (US) and the Royal Society, and 273 fellows to the Royal Society of Canada [Société royale du Canada](CA) have been affiliated with UBC. Three Canadian prime ministers, including Canada’s first female prime minister Kim Campbell and current prime minister Justin Trudeau have been educated at UBC.


The University of British Columbia is a member of Universitas 21, an international association of research-led institutions and the only Canadian member of the Association of Pacific Rim Universities, a consortium of 42 leading research universities in the Pacific Rim. In 2017, the University of British Columbia had the second-largest sponsored research income out of any Canadian university, totalling C$577 million. In the same year, the university’s faculty averaged a sponsored research income of $249,900, the eighth highest in the country, while graduate students averaged a sponsored research income of $55,200.

The university has been ranked on several bibliometric university rankings, which uses citation analysis to evaluate the impact a university has on academic publications. In 2019, the Performance Ranking of Scientific Papers for World Universities ranked UBC 27th in the world and second in Canada. The University Ranking by Academic Performance 2018–19 rankings placed the university 27th in the world and second in Canada.

The university operates and manages a number of research centres:

In 1972, a consortium of the University of British Columbia and four other universities from Alberta and British Columbia established the Bamfield Marine Sciences Centre. Located on Vancouver Island, the centre provides year-round research facilities and technical assistance for biologists, ecologists and oceanographers.
The Peter Wall Institute for Advanced Studies is an interdisciplinary research institute for fundamental research in the Sciences, Social Sciences, and Humanities.
The UBC Farm is a 24-hectare (59-acre) learning and research farm in UBC’s South Campus area. It features Saturday Farm Markets from early June until early October, selling organic produce and eggs to the community.
TRIUMF, a laboratory specializing in particle and nuclear physics, is also situated at the university. The name was formerly an acronym for Tri-University Meson Facility, but TRIUMF is now owned and operated by a consortium of eleven Canadian universities. The consortium runs TRIUMF through a contribution of funds from the National Research Council of Canada [Conseil national de recherches Canada] (CA) and makes TRIUMF’s facilities available to Canadian scientists and to scientists from around the world.
BC Centre on Substance Use (BCCSU) and UBC have established Professorships in Cannabis Science in 2018 following Canada’s legalization of cannabis.[96]
The Centre for the Study of Democratic Institutions is a research institute for the teaching and study of innovation in democratic practice and institutions. Established in 2002, the centre conducts research and teaching in cooperation with scholars, public officials, NGOs and students. The centre is formally housed in the UBC School of Public Policy and Global Affairs (SPPGA), and operates in association with faculty in the UBC Department of Political Science. It was initially funded from the Merilees Chair through a donation by Gail and Stephen Jarislowsky.
The Stewart Blusson Quantum Matter Institute, one of three Canadian research institutes focused on quantum materials and technology research, was established in 2015 with the support of the Canada First Excellence Research Fund and a donation from Stewart Blusson.

In 2017, UBC inked a $3 million research agreement with Huawei for big data and fuel cell technology. The university refused to release the agreement without an access to information request.

The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities (US) outside the United States, the other being McGill(CA).

The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

Early history

The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

World wars and post-war years

The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

Since 2000

In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


Since 1926 the University of Toronto has been a member of the Association of American Universities (US) a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.