From University of Maryland Computer Mathematics and Natural Sciences (US): “Why Does Mercury Have Such a Big Iron Core? Magnetism!”

From University of Maryland Computer Mathematics and Natural Sciences (US)

July 2, 2021
Kimbra Cutlip

New research from the University of Maryland shows that proximity to the sun’s magnetic field determines a planet’s interior composition.

New research shows the sun’s magnetic field drew iron toward the center of our solar system as the planets formed. That explains why Mercury, which is closest to the sun has a bigger, denser, iron core relative to its outer layers than the other rocky planets like Earth and Mars. (Image Credit: NASA’s Goddard Space Flight Center (US).)

A new study disputes the prevailing hypothesis on why Mercury has a big core relative to its mantle (the layer between a planet’s core and crust). For decades, scientists argued that hit-and-run collisions with other bodies during the formation of our solar system blew away much of Mercury’s rocky mantle and left the big, dense, metal core inside. But new research reveals that collisions are not to blame—the sun’s magnetism is.

William McDonough, a professor of geology at the University of Maryland, and Takashi Yoshizaki from Tohoku University [東北大学] (JP) developed a model showing that the density, mass and iron content of a rocky planet’s core are influenced by its distance from the sun’s magnetic field. The paper describing the model was published on July 2, 2021, in the journal Progress in Earth and Planetary Science.

“The four inner planets of our solar system—Mercury, Venus, Earth and Mars—are made up of different proportions of metal and rock,” McDonough said. “There is a gradient in which the metal content in the core drops off as the planets get farther from the sun. Our paper explains how this happened by showing that the distribution of raw materials in the early forming solar system was controlled by the sun’s magnetic field.”

McDonough previously developed a model for Earth’s composition that is commonly used by planetary scientists to determine the composition of exoplanets. (His seminal paper on this work has been cited more than 8,000 times.)

McDonough’s new model shows that during the early formation of our solar system, when the young sun was surrounded by a swirling cloud of dust and gas, grains of iron were drawn toward the center by the sun’s magnetic field. When the planets began to form from clumps of that dust and gas, planets closer to the sun incorporated more iron into their cores than those farther away.

The researchers found that the density and proportion of iron in a rocky planet’s core correlates with the strength of the magnetic field around the sun during planetary formation. Their new study suggests that magnetism should be factored into future attempts to describe the composition of rocky planets, including those outside our solar system.

The composition of a planet’s core is important for its potential to support life. On Earth, for instance, a molten iron core creates a magnetosphere that protects the planet from cancer-causing cosmic rays. The core also contains the majority of the planet’s phosphorus, which is an important nutrient for sustaining carbon-based life.

Using existing models of planetary formation, McDonough determined the speed at which gas and dust was pulled into the center of our solar system during its formation. He factored in the magnetic field that would have been generated by the sun as it burst into being and calculated how that magnetic field would draw iron through the dust and gas cloud.

As the early solar system began to cool, dust and gas that were not drawn into the sun began to clump together. The clumps closer to the sun would have been exposed to a stronger magnetic field and thus would contain more iron than those farther away from the sun. As the clumps coalesced and cooled into spinning planets, gravitational forces drew the iron into their core.

When McDonough incorporated this model into calculations of planetary formation, it revealed a gradient in metal content and density that corresponds perfectly with what scientists know about the planets in our solar system. Mercury has a metallic core that makes up about three-quarters of its mass. The cores of Earth and Venus are only about one-third of their mass, and Mars, the outermost of the rocky planets, has a small core that is only about one-quarter of its mass.

This new understanding of the role magnetism plays in planetary formation creates a kink in the study of exoplanets, because there is currently no method to determine the magnetic properties of a star from Earth-based observations. Scientists infer the composition of an exoplanet based on the spectrum of light radiated from its sun. Different elements in a star emit radiation in different wavelengths, so measuring those wavelengths reveals what the star, and presumably the planets around it, are made of.

“You can no longer just say, ‘Oh, the composition of a star looks like this, so the planets around it must look like this,’” McDonough said. “Now you have to say, ‘Each planet could have more or less iron based on the magnetic properties of the star in the early growth of the solar system.’”

The next steps in this work will be for scientists to find another planetary system like ours—one with rocky planets spread over wide distances from their central sun. If the density of the planets drops as they radiate out from the sun the way it does in our solar system, researchers could confirm this new theory and infer that a magnetic field influenced planetary formation.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

U Maryland Campus

About University of Maryland Computer Mathematics and Natural Sciences (US)

The thirst for new knowledge is a fundamental and defining characteristic of humankind. It is also at the heart of scientific endeavor and discovery. As we seek to understand our world, across a host of complexly interconnected phenomena and over scales of time and distance that were virtually inaccessible to us a generation ago, our discoveries shape that world. At the forefront of many of these discoveries is the College of Computer, Mathematical, and Natural Sciences (CMNS).

CMNS is home to 12 major research institutes and centers and to 10 academic departments: astronomy, atmospheric and oceanic science, biology, cell biology and molecular genetics, chemistry and biochemistry, computer science, entomology, geology, mathematics, and physics.

Our Faculty

Our faculty are at the cutting edge over the full range of these disciplines. Our physicists fill in major gaps in our fundamental understanding of matter, participating in the recent Higgs boson discovery, and demonstrating the first-ever teleportation of information between atoms. Our astronomers probe the origin of the universe with one of the world’s premier radio observatories, and have just discovered water on the moon. Our computer scientists are developing the principles for guaranteed security and privacy in information systems.

Our Research

Driven by the pursuit of excellence, the University of Maryland has enjoyed a remarkable rise in accomplishment and reputation over the past two decades. By any measure, Maryland is now one of the nation’s preeminent public research universities and on a path to become one of the world’s best. To fulfill this promise, we must capitalize on our momentum, fully exploit our competitive advantages, and pursue ambitious goals with great discipline and entrepreneurial spirit. This promise is within reach. This strategic plan is our working agenda.

The plan is comprehensive, bold, and action oriented. It sets forth a vision of the University as an institution unmatched in its capacity to attract talent, address the most important issues of our time, and produce the leaders of tomorrow. The plan will guide the investment of our human and material resources as we strengthen our undergraduate and graduate programs and expand research, outreach and partnerships, become a truly international center, and enhance our surrounding community.

Our success will benefit Maryland in the near and long term, strengthen the State’s competitive capacity in a challenging and changing environment and enrich the economic, social and cultural life of the region. We will be a catalyst for progress, the State’s most valuable asset, and an indispensable contributor to the nation’s well-being. Achieving the goals of Transforming Maryland requires broad-based and sustained support from our extended community. We ask our stakeholders to join with us to make the University an institution of world-class quality with world-wide reach and unparalleled impact as it serves the people and the state of Maryland.

Our researchers are also at the cusp of the new biology for the 21st century, with bioscience emerging as a key area in almost all CMNS disciplines. Entomologists are learning how climate change affects the behavior of insects, and earth science faculty are coupling physical and biosphere data to predict that change. Geochemists are discovering how our planet evolved to support life, and biologists and entomologists are discovering how evolutionary processes have operated in living organisms. Our biologists have learned how human generated sound affects aquatic organisms, and cell biologists and computer scientists use advanced genomics to study disease and host-pathogen interactions. Our mathematicians are modeling the spread of AIDS, while our astronomers are searching for habitable exoplanets.

Our Education

CMNS is also a national resource for educating and training the next generation of leaders. Many of our major programs are ranked among the top 10 of public research universities in the nation. CMNS offers every student a high-quality, innovative and cross-disciplinary educational experience that is also affordable. Strongly committed to making science and mathematics studies available to all, CMNS actively encourages and supports the recruitment and retention of women and minorities.

Our Students

Our students have the unique opportunity to work closely with first-class faculty in state-of-the-art labs both on and off campus, conducting real-world, high-impact research on some of the most exciting problems of modern science. 87% of our undergraduates conduct research and/or hold internships while earning their bachelor’s degree. CMNS degrees command respect around the world, and open doors to a wide variety of rewarding career options. Many students continue on to graduate school; others find challenging positions in high-tech industry or federal laboratories, and some join professions such as medicine, teaching, and law.