From NASA JPL-Caltech (US) : “NASA Balloon Detects California Earthquake – Next Stop Venus?”

NASA JPL Banner

From NASA JPL-Caltech (US)

Jun 21, 2021

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

Robert Perkins
626-395-1862
rperkins@caltech.edu

1
Baloons near Ridgecrest, California after a series of earthquakes JULY 2019. Caltech and JPL attached barometers hoping to detect the sound of one or more aftershocks. Credit: NASA/JPL-Caltech.

The technique is being developed to detect “venusquakes”. A new study details how, in 2019, it made the first balloon-borne detection of a quake much closer to home.

Between July 4 and July 6, 2019, a sequence of powerful earthquakes rumbled near Ridgecrest, California, triggering more than 10,000 aftershocks over a six-week period. Seeing an opportunity, researchers from NASA’s Jet Propulsion Laboratory and Caltech flew instruments attached to high-altitude balloons over the region in hopes of making the first balloon-borne detection of a naturally occurring earthquake. Their goal: to test the technology for future applications at Venus, where balloons equipped with science instruments could float above the planet’s exceedingly inhospitable surface.

And they succeeded. On July 22, highly sensitive barometers (instruments that measure changes in air pressure) on one of the balloons detected the low-frequency sound waves caused by an aftershock on the ground.

In their new study, published on June 20 in Geophysical Research Letters, the team behind the balloons describes how a similar technique could help reveal the innermost mysteries of Venus, where surface temperatures are hot enough to melt lead and atmospheric pressures are high enough to crush a submarine.

Planetary Rumbles

Approximately the size of Earth, Venus is thought to have once been more hospitable before evolving into a place that is remarkably different from our habitable world. Scientists aren’t sure why that happened.

One key way to understand how a rocky planet evolved is to study what’s inside, and one of the best ways to do that is to measure the seismic waves that bounce around below its surface. On Earth, different materials and structures refract these subsurface waves in different ways. By studying the strength and speed of waves produced by an earthquake or explosion, seismologists can determine the character of rocky layers beneath the surface and even pinpoint reservoirs of liquid, such as oil or water. These measurements can also be used to detect volcanic and tectonic activity.

2
One of the “heliotrope” balloons is being prepared for flight soon after the 2019 Ridgecrest earthquake sequence. The balloons were launched from California’s Mojave Desert and allowed to drift over the region.
Credit: NASA/JPL-Caltech.

“Much of our understanding about Earth’s interior – how it cools and its relationship to the surface, where life resides – comes from the analysis of seismic waves that traverse regions as deep as Earth’s inner core,” said Jennifer M. Jackson, the William E. Leonhard Professor of Mineral Physics at Caltech’s Seismological Laboratory and a study co-author. “Tens of thousands of ground-based seismometers populate spatially-dense or permanent networks, enabling this possibility on Earth.

_____________________________________________________________________________________

Earthquake Alert

1

Earthquake Alert

Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

Get the app in the Google Play store.

3
Smartphone network spatial distribution (green and red dots) on December 4, 2015
Meet The Quake-Catcher Network
QCN bloc

Quake-Catcher Network

The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

Below, the QCN Quake Catcher Network map
QCN Quake Catcher Network map

QuakeAlertUSA

1

About Early Warning Labs, LLC

Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

Watch a video describing how ShakeAlert works in English or Spanish.

The primary project partners include:

United States Geological Survey
California Governor’s Office of Emergency Services (CalOES)
California Geological Survey California Institute of Technology
University of California Berkeley
University of Washington
University of Oregon
Gordon and Betty Moore Foundation

The Earthquake Threat

Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

Part of the Solution

Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

System Goal

The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

Current Status

The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

Authorities

The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

For More Information

Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
rdegroot@usgs.gov
626-583-7225

Learn more about EEW Research

ShakeAlert Fact Sheet

ShakeAlert Implementation Plan

Earthquake Early Warning Introduction

The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

Earthquake Early Warning Background

The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

Earthquake early warning can provide enough time to:
Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
Initiate mass notification procedures
Open fire-house doors and notify local first responders
Slow and stop trains and taxiing planes
Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
Move people away from dangerous machines or chemicals in work environments
Shut down gas lines, water treatment plants, or nuclear reactors
Automatically shut down and isolate industrial systems

However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

GNSS-Global Navigational Satellite System

1
GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
_____________________________________________________________________________________

We don’t have this luxury on other planetary bodies, particularly on Venus. Observations of seismic activity there would strengthen our understanding of rocky planets, but Venus’ extreme environment requires us to investigate novel detection techniques.”

JPL and Caltech have been developing this balloon-based seismology technique since 2016. Because seismic waves produce sound waves, information is translated from the subsurface and into the atmosphere. Valuable science can then be gathered by studying sound waves from the air in a similar way that seismologists would study seismic waves from the ground.

If this could be achieved at Venus, scientists will have found a way to study the planet’s enigmatic interior without having to land any hardware on its extreme surface.

The Ridgecrest Quakes

During the aftershocks following the 2019 Ridgecrest earthquake sequence, JPL’s Attila Komjathy and his colleagues led the campaign by releasing two “heliotrope” balloons.

1
Highway 178 SW of Trona. Taken early in the morning July 6, 2019 after the M7.1 earthquake which struck eastern California, southwest of Searles Valley, near Ridgecrest, CA. (Ben Brooks, USGS)

4
All earthquakes magnitude 2.5 and greater in the Ridgecrest sequence area July 4 to August 15 are shown as black dots. The M6.4 earthquake on July 4 and the M7.1 mainshock on July 5 are shown as red stars. The major nearby fault zones are labeled (Public domain.)

Based on a design developed by study co-author Daniel Bowman of DOE’s Sandia National Laboratories in Albuquerque, New Mexico, the balloons rise to altitudes of about 11 to 15 miles (18 to 24 kilometers) when heated by the Sun and return to the ground at dusk. As the balloons drifted, barometers they carried measured changes in air pressure over the region while the faint acoustic vibrations of the aftershocks traveled through the air.

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

NASA JPL Campus

Jet Propulsion Laboratory (JPL) (US) ) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

Caltech Logo