From University of Toronto (CA) : “Making space commonplace- U of T startup works with NASA on low-cost exoplanet research”

From University of Toronto (CA)

June 14, 2021
Rahul Kalvapalle

With origins in the university’s Balloon Astrophysics Group, U of T startup StarSpec is providing a balloon-based suborbital research vessel that will house and control a 2025 NASA mission’s telescope (image courtesy of StarSpec.)

A giant telescope carried on a balloon the size of a football stadium will soon allow researchers to gaze at distant gas planets known as “hot Jupiters” – and a University of Toronto startup is playing a key role in the endeavour.

Growing out of research at U of T, StarSpec is contributing to the 2025 National Aeronautics Space Agency (US) project by providing the suborbital research vessel that houses and controls the mission’s telescope, which will be deployed some 40 kilometres above the Earth’s surface after the balloon is launched from a volcanic island in Antarctica.

It’s hoped the NASA mission – one of several StarSpec is involved with – will both improve our understanding of exoplanets and put StarSpec one step closer to realizing its ultimate goal of helping small organizations, including researchers, access space by providing them with cheap, highly functional gear.

“There is a growing class of people who want access to space either for astronomy, Earth-observation or satellite-based Internet, but need it faster and at a lower cost than is typically afforded by what I would call ‘the old space regime,’” says Javier Romualdez, StarSpec’s CEO and a former PhD student at U of T.

“StarSpec is making space accessible through the availability of standardized sub-orbital technologies – satellites, hardware and software – that can allow researchers and technology developers to get access to space or near-space without the risk, cost and long development times associated with a typical space mission.”

StarSpec aims to fill the “supply-chain gap” in space technology by providing gear such as its research gondolas, which are can house, support and control scientific instruments (photo courtesy of StarSpec.)

For the upcoming NASA mission, StarSpec’s balloon-borne research gondola will be equipped with high-precision telescope and image stabilization systems, enabling the U.S. space agency’s Exoplanet Climate Infrared Telescope (EXCITE) to make spectrographic measurements of planets with a high degree of accuracy – crucial for better understanding their atmospheres while shedding light on how solar systems and planets form.

The research gondola StarSpec is building for NASA’s EXCITE mission is one of many standardized-to-semi-custom suborbital research platforms that offers unparalleled pointing and scanning performance.

StarSpec, which received assistance from U of T’s UTEST entrepreneurship program, grew out of research at the Dunlap Institute for Astronomy & Astrophysics (CA), department of physics in the Faculty of Arts & Science and the U of T Institute for Aerospace Studies (UTIAS) in the Faculty of Applied Science & Engineering. It’s one of a growing number of space technology companies that has emerged from the university in recent years. Others include Kepler Communications, which builds, launches and operates low earth orbit satellites, and was founded by alumni from U of T’S Faculty of Applied Science and Engineering, and those working with the Creative Destruction Lab, a seed-stage accelerator based at U of T’s Rotman School of Management that launched a dedicated stream for space ventures in 2018.

Yet, while launches have become less expensive and risky in recent years thanks to the growth of launch companies like Elon Musk’s SpaceX, Romualdez says there remains a significant barrier to accessing space: supporting technology. That’s why StarSpec is focusing on solutions such as its research gondolas, which are essentially space-proof carriages fitted with the technologies to house, support and control scientific instruments.

“Let’s say you want to put a camera in space to take pictures of the Earth or build a new Google Maps. It’s not like you can just take a camera, stick it into SpaceX’s rocket and launch it into space,” Romualdez says. “It’s not going to work because you don’t have the communications, the power, the ability to point and control the camera and the ability to downlink the data.

“That’s what we’re providing. We’re basically filling the supply-chain gap in space technology.”

StarSpec’s gondolas use modularized “plug-and-play” systems with standardized hardware and software that can be used with existing launch vehicles, allowing for precise control of scientific instruments – all without exorbitant costs and lengthy development times.

“The traditional approach is to try and rebuild everything from scratch every single time an experiment has to go [to space],” says John Hartley, who holds a PhD in physics from U of T and serves as StarSpec’s chief financial officer. “With our systems in place, the timeline can be cut in half, which also translates to being more cost-effective.

“That’s a major advantage. If you can get up there sooner, you get your data and results sooner, and everybody’s happy. That brings real benefits to both the academic and commercial worlds.”

StarSpec’s origins can be traced to U of T’s Balloon Astrophysics Group, headed by Professor Barth Netterfield, a leading expert in balloon-borne and suborbital technology who now serves as the company’s technical adviser. Romualdez and Hartley both completed their PhDs in Netterfield’s lab, while chief technical officer Steven Li completed his master’s degree in the lab before going on to pursue a PhD at Princeton University.

Romualdez says he was interested in working with Netterfield because he wanted to carry out an end-to-end project. “This lab stuck out to me because they said, ‘OK, fine, your PhD will be designing, building, testing and launching a sub-orbital telescope – all in five years,” Romualdez says.

In 2015, only three years after Romualdez began his doctoral work, the Balloon Astrophysics Group launched the Balloon-Borne Imaging Telescope (BIT) with the Canadian Space Agency [Agence Spatiale Canadienne](CA) in Timmins, Ont. The next launch took place from NASA’s Columbia Scientific Balloon Facility in Texas, with two further launches confirming the balloon-borne telescope as an instrument with imaging resolution and stability performance that rivaled NASA’s Hubble Space Telescope.

“BIT was basically a Steadicam with the same astronomical capabilities as the Hubble Space Telescope, but we were able to develop it in three years with a graduate research budget,” Romualdez says.

Now, StarSpec is looking to bring similar capabilities to NASA’s EXCITE project, which will measure the atmosphere content of exoplanets. “The overarching idea here is trying to answer the question: Are we alone in the universe?’” says Hartley. “We know Earth has an atmosphere and because of that, we can live on it. And there are exoplanets out there in the millions, so what do they look like? EXCITE is a step towards answering that question.”

StarSpec has also been contracted to take part in several other NASA missions, including one project with the new Pioneers program that fosters astrophysics science ventures at lower cost, using smaller hardware.

Over the next few years, the company hopes to take part in suborbital projects all over the world.

“Two years from now, I believe we will have saturated and expanded as far as we can into the ballooning and suborbital space,” says Romualdez.

What’s next for Starspec? The company is working to repurpose its suborbital technologies for satellites that can access low-Earth orbit – the layer of space roughly between 200 and 1,600 kilometres above the Earth’s surface. Among its projects is an experiment at U of T’s Dunlap Institute that will utilize a space-borne telescope.

It’s also developing a range of standardized, plug-and-play satellites.

“Five years from now, we want to have a standardized product stream for satellites,” Romualdez says, adding there’s growing interest in using space to support applications such as fintech and real-time Earth observation. “I see us having a major contribution on those fronts.”

StarSpec’s ambitious trajectory would not have been possible without the support of U of T and the UTEST program in particular, its founders say. The U of T early-stage entrepreneurship program’s contributions included connecting the company to its current legal team as well as crucial intellectual property resources.

“When we were starting, we had a lot of technical knowhow but realized very early on that, from a business perspective, we were in over our heads,” Hartley says. “UTEST was an easy and accessible platform for us to gain information on how to start and run a business; what sorts of things you need to think about; how do you position yourself in the market – things that we didn’t understand and needed to figure out.”

Adds Romualdez: “It’s been only nine months since we were part of the UTEST program, and looking back, we’ve already come so far. UTEST was a great stepping-stone to speed us on our way.”

Ultimately, StarSpec hopes to help create a world where space projects are no longer limited to governments, giant corporations or billionaires like Amazon’s Jeff Bezos.

“Our long-term vision is that a small business, a city or a small research group at a university that has something that could really have an impact – a revolutionary communications or astronomical device – will be able to look in a catalogue, select a system and plan a launch,” says Romualdez.

“We’re envisioning a world where accessing space is not this extremely niche concept [with all sorts of highly technical] barriers. It’s commonplace.”

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities (US) outside the United States, the other being McGill(CA).

The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

Early history

The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

World wars and post-war years

The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

Since 2000

In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


Since 1926 the University of Toronto has been a member of the Association of American Universities (US) a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.