From DOE’s Lawrence Berkeley National Laboratory (US) : “Cabling for Large Hadron Collider Upgrade Project Reaches Halfway Mark”

From DOE’s Lawrence Berkeley National Laboratory (US)

June 8, 2021
Media Relations
(510) 486-5183

By Ian Pong and Joe Chew

The U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) has passed the halfway mark in the multi-year process of fabricating crucial superconducting cables as part of a project to upgrade the Large Hadron Collider (LHC) at CERN.

This upgrade, now in progress, will greatly increase the facility’s collision rate and its scientific productivity.

The High-Luminosity LHC Accelerator Upgrade Project, or HL-LHC AUP, is a multi-institutional, U.S. contribution to the upgrade of the LHC facility. The project is headquartered at DOE’s Fermi National Accelerator Laboratory (Fermilab) (US).

A group of much more powerful focusing magnets, known as the “inner triplet,” are planned to be installed on either side of the LHC’s interaction points, where the separate proton beams collide. By squeezing the beams to higher density at the interaction points, these stronger focusing magnets will increase the number of collisions over the lifetime of the machine by at least a factor of 10. This will significantly enhance the opportunities for discovering new physics.

The coils for the HL-LHC AUP focusing magnets are made from advanced niobium-tin (Nb3Sn) superconductor in a copper matrix. One of Berkeley Lab’s key contributions is fabricating all the cables to be used in the magnets. The task reached the halfway mark in January 2021.

Left: Ian Pong, Berkeley Lab cabling manager for the HL-LHC AUP, works with the machine that forms numerous strands of superconducting wire into “Rutherford-style” cables. Cabling is crucial to magnet performance and a longtime strength of Berkeley Lab’s superconducting magnet program. The cabling machine was first developed for the Superconducting Super Collider project and has since been updated with many state-of-the-art quality assurance features designed to address DOE project needs. Credit: Marilyn Sargent/Berkeley Lab. Right: A detail of the part of the cabling machine: Strands of superconducting wire enter the rollers of the cabling machine where strands of superconducting wire are shaped and formed into keystoned “Rutherford style” cable. Credit: Berkeley Lab.

Fermilab’s Giorgio Apollinari, AUP Project Manager, said of the milestone, “This is a great ‘turning-of-the-buoy’ achievement since it allows the project to continue unimpeded in the production of these critical HL-LHC AUP magnets.”

Berkeley Lab project lead and Berkeley Center for Magnet Technology (BCMT) Director Soren Prestemon added, “This halfway mark is a tremendous milestone for our cabling team, who have delivered exceptionally for the project – even more remarkable given the complexities of on-site work under COVID constraints.”

The overall AUP was recently granted Critical Decision 3 (CD-3) approval in the DOE’s project-management process, giving the go-ahead for series production of the magnets themselves. Cable fabrication had already begun under a management approach in which long-lead-time items, such as wire procurement and cable fabrication, received approvals to go ahead before the series production of the magnets.

“The AUP project leverages extensive expertise and capabilities in advanced Nb3Sn magnet technology at Berkeley Lab,” said Cameron Geddes, director of Berkeley Lab’s Accelerator Technology and Applied Physics (ATAP) Division. ATAP and the Engineering Division formed the BCMT to join forces in advanced magnet design. Geddes added, “This critical milestone demonstrates the Lab’s commitment to the project and the team’s unique ability to deliver on its challenging requirements.”

From conductor to cable to magnet

Most people have seen or even built electromagnets made from coils of individual wire, a familiar item at school science fairs and in consumer products. However, there are many reasons why these would not work well in accelerator magnets. Instead, accelerators use cables formed from multiple strands of superconducting wire. The cables are flat, with a rectangular or very slightly trapezoidal “keystoned” cross section, a profile known as “Rutherford style” after the Rutherford Appleton Laboratory in England, which developed the design.

Rutherford cables are flexible when bent on their broad face, which makes coil winding easy. However, the strands at the thin edges of the cable are heavily deformed and their thermoelectric stability could be degraded, so the shaping must be carefully monitored and controlled.

The overall AUP team is supported by the DOE Office of Science and consists of six U.S. laboratories and two universities: Fermilab, DOE’s Brookhaven National Laboratory (US), Lawrence Berkeley National Laboratory, DOE’s SLAC National Accelerator Laboratory (US), and DOE’s Thomas Jefferson National Accelerator Facility (US), along with the National High Magnetic Field Laboratory at Florida State University (US), Old Dominion University (US), and Florida State University (US). Each brings unique strengths to the challenges of designing, building, and testing these advanced magnets and their components. Industrial partners supply the superconducting wire.

Berkeley Lab ships the cables to Fermilab or Brookhaven to be fabricated into coils and reacted (heat treated) to activate their superconductivity. The reacted coils are returned to Berkeley Lab, which uses them to make quadrupole magnets. This recent article gives an in-depth look at how multiple institutions use their complementary strengths to make magnets for the AUP.

“These magnets are a culmination of more than 15 years of technology development, starting with the LARP (LHC Accelerator Research Program) collaboration,” said Dan Cheng of Berkeley Lab’s Engineering Division.

‘Eagle eyes for quality and big collaborative hearts’

Berkeley Lab, which celebrates its 90th anniversary this year, has a long history of national and international collaboration in designing and building accelerators, and its superconducting-magnet expertise goes back to the early 1970s.

The planetary-motion cabling machine at Berkeley Lab was designed and installed in the early 1980s and has received continual upgrades over the years. It has contributed to a large number of DOE projects such as the Fermilab Tevatron upgrade and then the early development of Superconducting Super Collider. Today, the cabling facility is key infrastructure for Berkeley Lab’s superconducting-magnet activities.

The cabling facility also boasts a world-class suite of quality-assurance systems to monitor cable properties. These include an in-line cable measurement machine that can measure a cable’s dimensional parameters at a set pressure, an in-line camera system that can record every millimeter of all four sides of the fabricated cables and perform image analysis, and a specially designed cryo-cooler system for reproducibly measuring key parameters.

The people who assemble and use this equipment are in Berkeley Lab’s ATAP and Engineering divisions. Ian Pong, a staff scientist in ATAP and Berkeley Lab cabling manager for the HL-LHC AUP, said “We have not only world-class equipment for fabricating state-of-the-art superconducting cables, but most importantly, a world-class team of people who have eagle eyes for quality and big collaborative hearts for projects.”

Apollinari said, “The Berkeley Lab group led by Ian has been outstanding in the high-quality production of the Nb3Sn cables, meeting not only the demanding quality assurance and control requirements but achieving a production yield very much above and beyond the expected yield for this kind of activities. This is obviously of great help for the AUP Project, both economically and from the schedule point of view.”

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

LBNL campus

Bringing Science Solutions to the World

In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (US) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley (US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.



The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

LBNL 88 inch cyclotron.

Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory (US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).


Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.


After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy (US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory (US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

The lab remains owned by the Department of Energy (US), with management from the University of California (US). Companies such as Intel were funding the lab’s research into computing chips.

Science mission

From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

Berkeley Lab operates five major National User Facilities for the DOE Office of Science (US):

The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.


The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

The Joint Genome Institute (JGI) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, Lawrence Livermore National Lab (LLNL), DOE’s Oak Ridge National Laboratory (US)(ORNL), DOE’s Pacific Northwest National Laboratory (US) (PNNL), and the HudsonAlpha Institute for Biotechnology (US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

The LBNL Molecular Foundry (US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

The DOE’s NERSC National Energy Research Scientific Computing Center (US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory

The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

NERSC is a DOE Office of Science User Facility.

The DOE’s Energy Science Network (US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory (US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (US), and DOE’s Lawrence Livermore National Laboratory (US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology (US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory (US) leads JCESR and Berkeley Lab is a major partner.