From Physics (US) : “Confirming a Cosmic-Ray Bump”

About Physics

From Physics (US)

May 18, 2021
Katherine Wright

The DArk Matter Particle Explorer has made the most precise measurements of galactic cosmic rays to date.

For over 5 years, the DArk Matter Particle Explorer (DAMPE)[Chinese Academy of Sciences] has orbited Earth measuring cosmic rays.

The team behind the telescope has now analyzed 4.5 years of cosmic-ray data, finding spectral features that don’t match predictions Physical Review Letters. While similar features were hinted at in other experiments, the measurements by DAMPE have a higher precision and cover a wider range of energies than any other single experiment. The findings could help researchers uncover the origin of galactic cosmic rays.

Cosmic rays consist mostly of protons and helium ions and are thought to emanate from supernovae. On their journey to Earth the rays are deflected by interstellar magnetic fields, making it hard to determine their sources. But researchers hope that by measuring the energy spectra of cosmic rays, they can extract some information about the supernovae that sent them flying and about the structure of our Galaxy.

In their analysis, the DAMPE team analyzed the energy spectrum of detected helium ions. These particles had energies from 70 GeV to 80 TeV, an order of magnitude higher than those detected with the Alpha Magnetic Spectrometer aboard the International Space Station (see Focus: New Data Reveal the Heavy Side of Cosmic Rays) and 100 times higher than those seen with the PAMELA satellite (see Synopsis: Solar Cycle Affects Cosmic Ray Positrons).

At around 1.3 TeV the team observed the intensity of the spectrum start to rise, peaking at about 34 TeV. The statistical significance of the finding is 4.3 sigma. Signs of such a bump have been seen before, but the uncertainties in previous data were too large to confirm the bump’s presence. The team says that they think the bump-like feature might be caused by a nearby supernova, but that remains unconfirmed.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics (US) highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.