From University of Michigan (US) : “An inconstant Hubble constant? U-M research suggests fix to cosmological cornerstone”

U Michigan bloc

From University of Michigan (US)

May 20, 2021
Morgan Sherburne
morganls@umich.edu

1
Pictured is the supernova of the type Ia star 1994D, in galaxy NGC 4526. The supernova is the bright spot in the lower left corner of the image. Image credit: NASA/ESA Hubble

More than 90 years ago, astronomer Edwin Hubble observed the first hint of the rate at which the universe expands, called the Hubble constant.

Almost immediately, astronomers began arguing about the actual value of this constant, and over time, realized that there was a discrepancy in this number between early universe observations and late universe observations.

Early in the universe’s existence, light moved through plasma—there were no stars yet—and from oscillations similar to sound waves created by this, scientists deduced that the Hubble constant was about 67. This means the universe expands about 67 kilometers per second faster every 3.26 million light-years.

But this observation differs when scientists look at the universe’s later life, after stars were born and galaxies formed. The gravity of these objects causes what’s called gravitational lensing, which distorts light between a distant source and its observer.

Other phenomena in this late universe include extreme explosions and events related to the end of a star’s life. Based on these later life observations, scientists calculated a different value, around 74. This discrepancy is called the Hubble tension.

Now, an international team including a University of Michigan physicist has analyzed a database of more than 1,000 supernovae explosions, supporting the idea that the Hubble constant might not actually be constant.

Instead, it may change based on the expansion of the universe, growing as the universe expands. This explanation likely requires new physics to explain the increasing rate of expansion, such as a modified version of Einstein’s gravity.

The team’s results are published in The Astrophysical Journal.

“The point is that there seems to be a tension between the larger values for late universe observations and lower values for early universe observation,” said Enrico Rinaldi, a research fellow in the U-M Department of Physics. “The question we asked in this paper is: What if the Hubble constant is not constant? What if it actually changes?”

The researchers used a dataset of supernovae—spectacular explosions that mark the final stage of a star’s life. When they shine, they emit a specific type of light. Specifically, the researchers were looking at Type Ia supernovae.

These types of supernovae stars were used to discover that the universe was expanding and accelerating, Rinaldi said, and they are known as “standard candles,” like a series of lighthouses with the same lightbulb.

If scientists know their luminosity, they can calculate their distance by observing their intensity in the sky. Next, the astronomers use what’s called the “redshift” to calculate how the universe’s rate of expansion might have increased over time.

Redshift is the name of the phenomenon that occurs when light stretches as the universe expands.

The essence of Hubble’s original observation is that the further away from the observer, the more wavelength becomes lengthened—like you tacked a Slinky to a wall and walked away from it, holding one end in your hands. Redshift and distance are related.

In Rinaldi’s team’s study, each bin of stars has a fixed reference value of redshift. By comparing the redshift of each bin of stars, the researchers can extract the Hubble constant for each of the different bins.

In their analysis, the researchers separated these stars based on intervals of redshift. They placed the stars at one interval of distance in one “bin,” then an equal number of stars at the next interval of distance in another bin, and so on. The closer the bin to Earth, the younger the stars are.

“If it’s a constant, then it should not be different when we extract it from bins of different distances. But our main result is that it actually changes with distance,” Rinaldi said. “The tension of the Hubble constant can be explained by some intrinsic dependence of this constant on the distance of the objects that you use.”

Additionally, the researchers found that their analysis of the Hubble constant changing with redshift allows them to smoothly “connect” the value of constant from the early universe probes and the value from the late universe probes, Rinaldi said.

“The extracted parameters are still compatible with the standard cosmological understanding that we have,” he said. “But this time they just shift a little bit as we change the distance, and this small shift is enough to explain why we have this tension.”

The researchers say there are several possible explanations for this apparent change in the Hubble constant—one being the possibility of observational biases in the data sample. To help correct for potential biases, astronomers are using Hyper Suprime-Cam on the Subaru Telescope to observe fainter supernovae over a wide area.



Data from this instrument will increase the sample of observed supernovae from remote regions and reduce the uncertainty in the data.

The team was led by Maria Dainotti, assistant professor at the National Astronomical Observatory of Japan [国立天文台](JP) and the Graduate University for Advanced Studies, SOKENDAI (総合研究大学院大学] (JP) and an affiliated scientist at the Space Telescope Science Institute (US). Rinaldi is also a researcher in the Theoretical Quantum Physics Laboratory and the Interdisciplinary Theoretical and Mathematical Sciences program at the research institute RIKEN [理研] (JP).

Fellow researchers include Biagio De Simone, a former master’s student at the University of Salerno; Tiziano Schiavone, a graduate student at the University of Pisa; Giovanni Montani, adjunct professor at the Sapienza University of Rome [Sapienza Università di Roma] (IT) and researcher at Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentENEA – Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile; Gaetano Lambiase, professor at the University of Salerno [Università degli Studi di Salerno] (IT).

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please support STEM education in your local school system

Stem Education Coalition

U MIchigan Campus

The University of Michigan (US) is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities (US).

Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

Research

Michigan is one of the founding members (in the year 1900) of the Association of American Universities (US). With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation (US), Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences,[123] is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

In the late 1960s U-M, together with Michigan State University (US) and Wayne State University (US), founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.