From University of Birmingham (UK) via COSMOS (AU): “Dating the stars- most accurate red giant age yet”

From University of Birmingham (UK)


Cosmos Magazine bloc


18 May 2021
Deborah Devis

Artist’s impression of the structure of a solar-like star and a red giant. The two images are not to scale – the scale is given in the lower right corner. Credit: Wikimedia Commons.

Researchers have successfully dated some of our galaxy’s oldest stars back to a cosmic collision, using data from Gaia Data Release 2 and other spectroscopic surveys on their oscillations and chemical composition.

The team, led by Josefina Montalbán of the University of Birmingham, UK, investigated the age of some red giant stars that were originally part of a satellite dwarf galaxy called Gaia-Enceladus, which collided with the Milky Way 11.5 billion years ago.

In their study, published in Nature Astronomy, the researchers surveyed 100 red giant stars and found that the Gaia-Enceladus stars were all similar in age or slightly younger than the other stars that began life in the Milky Way. This builds on the existing theory that the Milky Way had already started making stars before it merged with Gaia-Enceladus.

“The chemical composition, location and motion of the stars we can observe today in the Milky Way contain precious information about their origin,” says Montalbán.

“As we increase our knowledge of how and when these stars were formed, we can start to better understand how the merger of Gaia-Enceladus with the Milky Way affected the evolution of our Galaxy.”

As part of their analysis, they used a technique called asteroseismology, which measures relative frequency and amplitudes of the natural modes of oscillations of stars. This gives information about the size and internal structure of stars, which then helps estimate star age.

They combined this data with spectroscopy – a technique that measures light and radiation produced by matter – to identify the chemical composition of the stars, which also reveals information about age.

“We have shown the huge potential of asteroseismology in combination with spectroscopy to deliver precise, accurate relative ages for individual, very old, stars,” says co-author Andrea Miglio of the University of Bologna [Alma mater studiorum – Università di Bologna](IT).

“Taken together, these measurements contribute to sharpen our view on the early years of our Galaxy and promise a bright future for Galactic archeoastronomy.”

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

University of Birmingham (UK) has been challenging and developing great minds for more than a century. Characterised by a tradition of innovation, research at the University has broken new ground, pushed forward the boundaries of knowledge and made an impact on people’s lives. We continue this tradition today and have ambitions for a future that will embed our work and recognition of the Birmingham name on the international stage.

The University of Birmingham is a public research university located in Edgbaston, Birmingham, United Kingdom. It received its royal charter in 1900 as a successor to Queen’s College, Birmingham (founded in 1825 as the Birmingham School of Medicine and Surgery), and Mason Science College (established in 1875 by Sir Josiah Mason), making it the first English civic or ‘red brick’ university to receive its own royal charter. It is a founding member of both the Russell Group (UK) of British research universities and the international network of research universities, Universitas 21.

The student population includes 23,155 undergraduate and 12,605 postgraduate students, which is the 7th largest in the UK (out of 169). The annual income of the institution for 2019–20 was £737.3 million of which £140.4 million was from research grants and contracts, with an expenditure of £667.4 million.

The university is home to the Barber Institute of Fine Arts, housing works by Van Gogh, Picasso and Monet; the Shakespeare Institute; the Cadbury Research Library, home to the Mingana Collection of Middle Eastern manuscripts; the Lapworth Museum of Geology; and the 100-metre Joseph Chamberlain Memorial Clock Tower, which is a prominent landmark visible from many parts of the city. Academics and alumni of the university include former British Prime Ministers Neville Chamberlain and Stanley Baldwin, the British composer Sir Edward Elgar and eleven Nobel laureates.

Scientific discoveries and inventions

The university has been involved in many scientific breakthroughs and inventions. From 1925 until 1948, Sir Norman Haworth was Professor and Director of the Department of Chemistry. He was appointed Dean of the Faculty of Science and acted as Vice-Principal from 1947 until 1948. His research focused predominantly on carbohydrate chemistry in which he confirmed a number of structures of optically active sugars. By 1928, he had deduced and confirmed the structures of maltose, cellobiose, lactose, gentiobiose, melibiose, gentianose, raffinose, as well as the glucoside ring tautomeric structure of aldose sugars. His research helped to define the basic features of the starch, cellulose, glycogen, inulin and xylan molecules. He also contributed towards solving the problems with bacterial polysaccharides. He was a recipient of the Nobel Prize in Chemistry in 1937.

The cavity magnetron was developed in the Department of Physics by Sir John Randall, Harry Boot and James Sayers. This was vital to the Allied victory in World War II. In 1940, the Frisch–Peierls memorandum, a document which demonstrated that the atomic bomb was more than simply theoretically possible, was written in the Physics Department by Sir Rudolf Peierls and Otto Frisch. The university also hosted early work on gaseous diffusion in the Chemistry department when it was located in the Hills building.

Physicist Sir Mark Oliphant made a proposal for the construction of a proton-synchrotron in 1943, however he made no assertion that the machine would work. In 1945, phase stability was discovered; consequently, the proposal was revived, and construction of a machine that could surpass proton energies of 1 GeV began at the university. However, because of lack of funds, the machine did not start until 1953. The DOE’s Brookhaven National Laboratory (US) managed to beat them; they started their Cosmotron in 1952, and had it entirely working in 1953, before the University of Birmingham.

In 1947, Sir Peter Medawar was appointed Mason Professor of Zoology at the university. His work involved investigating the phenomenon of tolerance and transplantation immunity. He collaborated with Rupert E. Billingham and they did research on problems of pigmentation and skin grafting in cattle. They used skin grafting to differentiate between monozygotic and dizygotic twins in cattle. Taking the earlier research of R. D. Owen into consideration, they concluded that actively acquired tolerance of homografts could be artificially reproduced. For this research, Medawar was elected a Fellow of the Royal Society. He left Birmingham in 1951 and joined the faculty at University College London (UK), where he continued his research on transplantation immunity. He was a recipient of the Nobel Prize in Physiology or Medicine in 1960.