From University of Warsaw [Uniwersytet Warszawski] (PL) and Science Alert (AU) : “New marine symbiosis unseen for 270 million years”

From University of Warsaw [Uniwersytet Warszawski] (PL)

and

ScienceAlert

Science Alert (AU)

30 April 2021

A symbiotic relationship between two marine lifeforms has just been discovered thriving at the bottom of the ocean, after disappearing from the fossil record for hundreds of millions of years.

Scientists have found non-skeletal corals growing from the stalks of marine animals known as crinoids, or sea lilies, on the floor of the Pacific Ocean, off the coasts of Honshu and Shikoku in Japan.

“These specimens represent the first detailed records and examinations of a recent syn vivo association of a crinoid (host) and a hexacoral (epibiont),” the researchers wrote in their paper, “and therefore analyses of these associations can shed new light on our understanding of these common Paleozoic associations.”

During the Paleozoic era, crinoids and corals seem to have gotten along very well indeed. The seafloor fossil record is full of it, yielding countless examples of corals overgrowing crinoid stems to climb above the seafloor into the water column, to stronger ocean currents for filter-feeding.

Prof. Mikołaj Zapalski from the UW Faculty of Geology with researchers from Japan and Poland described an ecological “living fossil” unseen for 273 million years. Their article appeared in Palaeogeography, Palaeoclimatology, Palaeoecology.

1
Credit: Zapalski et al., Palaeogeography, Palaeoclimatology, Palaeoecology, 2021.

2
Credit: Zapalski et al., Palaeogeography, Palaeoclimatology, Palaeoecology, 2021.

Palaeozoic seafloors were inhabited by numerous organisms interacting with each other. One of these associations was corals growing on sea lilies (crinoids). As corals grew on crinoids, they were lifted above the seafloor, thus profiting from stronger feeding currents. Fossils of crinoid-coral associations are known from Palaeozoic rocks, and the youngest are known from rocks dated from ca. 273 million years ago. While both corals and crinoids are known from younger rocks, such associations are unknown neither from Meso- and Cenozoic strata nor contemporary seas.

In a research article [above], Prof. Mikołaj Zapalski from the UW Faculty of Geology with collaborators from Japan and Poland described an ecological “living fossil” unseen for 273 million years; non-skeletal corals growing on crinoid stalks. The investigated animals were collected from depths exceeding 100 m near the Pacific coasts of Honshu and Shikoku. The research was conducted using microtomography scanning and revealed that, unlike their Palaeozoic counterparts, recent corals do not modify the host’s skeleton. Despite such differences in the skeletal record, the newly discovered coral-crinoid associations may serve as a good model of relevant Palaeozoic interactions.

See the full University of Warsaw [Uniwersytet Warszawski] (PL)article here.

10 MAY 2021
MICHELLE STARR

A symbiotic relationship between two marine lifeforms has just been discovered thriving at the bottom of the ocean, after disappearing from the fossil record for hundreds of millions of years.

Scientists have found non-skeletal corals growing from the stalks of marine animals known as crinoids, or sea lilies, on the floor of the Pacific Ocean, off the coasts of Honshu and Shikoku in Japan.

“These specimens represent the first detailed records and examinations of a recent syn vivo association of a crinoid (host) and a hexacoral (epibiont),” the researchers wrote in their paper, “and therefore analyses of these associations can shed new light on our understanding of these common Paleozoic associations.”

During the Paleozoic era, crinoids and corals seem to have gotten along very well indeed. The seafloor fossil record is full of it, yielding countless examples of corals overgrowing crinoid stems to climb above the seafloor into the water column, to stronger ocean currents for filter-feeding.

Yet these benthic besties disappeared from the fossil record around 273 million years ago, after the specific crinoids and corals in question went extinct. Other species of crinoids and corals emerged in the Mesozoic, following the Permian-Triassic extinction – but never again have we seen them together in a symbiotic relationship.

Well, until now. At depths exceeding 100 meters (330 feet) below the ocean’s surface, scientists have found two different species of coral – hexacorals of the genera Abyssoanthus, which is very rare, and Metridioidea, a type of sea anemone – growing from the stems of living Japanese sea lilies (Metacrinus rotundus).

The joint Polish-Japanese research team, led by paleontologist Mikołaj Zapalski of the University of Warsaw in Poland, first used stereoscopic microscopy to observe and photograph the specimens.

Then, they used non-destructive microtomography to scan the specimens to reveal their interior structures, and DNA barcoding to identify the species.

They found that the corals, which attached below the feeding fans of the crinoids, likely didn’t compete with their hosts for food; and, being non-skeletal, likely didn’t affect the flexibility of the crinoid stalks, although the anemone may have hindered movement of the host’s cirri – thin strands that line the stalk.

It’s also unclear what benefit the crinoids gain from a relationship with coral, but one interesting thing did emerge: unlike the Paleozoic corals, the new specimens did not modify the structure of the crinoids’ skeleton.

This, the researchers said, can help explain the gap in the fossil record. The Paleozoic fossils of symbiotic corals and crinoids involve corals that have a calcite skeleton, such as Rugosa and Tabulata.

Fossils of soft-bodied organisms – such as non-skeletal corals – are rare. Zoantharia such as Abyssoanthus have no confirmed fossil record, and actiniaria such as Metridioidea (seen as a dry specimen in the image below) also are extremely limited.

4
(Zapalski et al., Palaeogeography, Palaeoclimatology, Palaeoecology, 2021)

If these corals don’t modify the host, and leave no fossil record, perhaps they have had a long relationship with crinoids that has simply not been recorded.

This means the modern relationship between coral and crinoid could contain some clues as to Paleozoic interactions between coral and crinoid. There’s evidence to suggest that zoantharians and rugose corals share a common ancestor, for instance.

The number of specimens recovered to date is small, but now that we know they are there, perhaps more work can be done to discover the history of this fascinating friendship.

“As both Actiniaria and Zoantharia have their phylogenetic roots deep in the Palaeozoic, and coral-crinoid associations were common among Palaeozoic Tabulate and Rugose corals, we can speculate that also Palaeozoic non-skeletal corals might have developed this strategy of settling on crinoids,” the researchers wrote in their paper.

“The coral-crinoid associations, characteristic of Palaeozoic benthic communities, disappeared by the end of Permian, and this current work represents the first detailed examination of their rediscovery in modern seas.”

See the full Science Alert (AU) article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

University of Warsaw [Uniwersytet Warszawski] (PL), established in 1816, is the largest university in Poland. It employs over 6,000 staff including over 3,100 academic educators. It provides graduate courses for 53,000 students (on top of over 9,200 postgraduate and doctoral candidates). The University offers some 37 different fields of study, 18 faculties and over 100 specializations in Humanities, technical as well as Natural Sciences.

It was founded as a Royal University on 19 November 1816, when the Partitions of Poland separated Warsaw from the oldest and most influential University of Kraków. Alexander I granted permission for the establishment of five faculties – law and political science, medicine, philosophy, theology and the humanities. The university expanded rapidly but was closed during November Uprising in 1830. It was reopened in 1857 as the Warsaw Academy of Medicine, which was now based in the nearby Staszic Palace with only medical and pharmaceutical faculties. All Polish-language campuses were closed in 1869 after the failed January Uprising, but the university managed to train 3,000 students, many of whom were important part of the Polish intelligentsia; meanwhile the Main Building was reopened for training military personnel. The university was resurrected during the First World War and the number of students reached 4,500 in 1918. After Poland’s independence the new government focused on improving the university, and in the early 1930s it became the country’s largest. New faculties were established and the curriculum was extended. Following the Second World War and the devastation of Warsaw, the University successfully reopened in 1945.

Today, University of Warsaw [Uniwersytet Warszawski] (PL) consists of 126 buildings and educational complexes with over 18 faculties: biology, chemistry, journalism and political science, philosophy and sociology, physics, geography and regional studies, geology, history, applied linguistics and Slavic philology, economics, philology, pedagogy, Polish language, law and public administration, psychology, applied social sciences, management and mathematics, computer science and mechanics.

The University of Warsaw [Uniwersytet Warszawski] (PL) is one of the top Polish universities. It was ranked by Perspektywy magazine as best Polish university in 2010, 2011, 2014 and 2016. International rankings such as ARWU and University Web Ranking rank the university as the best Polish higher level institution. On the list of 100 best European universities compiled by University Web Ranking, the University of Warsaw [Uniwersytet Warszawski] (PL) was placed as 61st. QS World University Rankings previously positioned the University of Warsaw [Uniwersytet Warszawski] (PL) as the best higher level institution among the world’s top 400.