From Rutgers University (US) : “Catastrophic Sea-Level Rise From Antarctic Melting Is Possible With Severe Global Warming”

Rutgers smaller
Our Great Seal.

From Rutgers University (US)

May 5, 2021

Todd Bates

Antarctic ice sheet is more likely to remain stable if Paris climate agreement is met.

If Paris Agreement targets are not met, the collapse of melting Antarctic ice shelves – like the Wilkins Ice Shelf in 2009 – could cause catastrophic global sea level rise in the second half of the century. National Aeronautics Space Agency (US).

The Antarctic ice sheet is much less likely to become unstable and cause dramatic sea-level rise in upcoming centuries if the world follows policies that keep global warming below a key 2015 Paris climate agreement target, according to a Rutgers coauthored study.

But if global warming exceeds the target – 2 degrees Celsius (3.6 degrees Fahrenheit) – the risk of ice shelves around the ice-sheet’s perimeter melting would increase significantly, and their collapse would trigger rapid Antarctic melting. That would result in at least 0.07 inches of global average sea-level rise a year in 2060 and beyond, according to the study in the journal Nature.

That’s faster than the average rate of sea-level rise over the past 120 years and, in vulnerable coastal places like downtown Annapolis, Maryland, has led to a dramatic increase in days of extreme flooding.

Global warming of 3 degrees Celsius (5.4 degrees Fahrenheit) could lead to catastrophic sea-level rise from Antarctic melting – an increase of at least 0.2 inches per year globally after 2060, on average.

“Ice-sheet collapse is irreversible over thousands of years, and if the Antarctic ice sheet becomes unstable it could continue to retreat for centuries,” said coauthor Daniel M. Gilford, a postdoctoral associate in the Rutgers Earth System Science & Policy Lab led by coauthor Robert E. Kopp, a professor in the Department of Earth and Planetary Sciences within the School of Arts and Sciences at Rutgers University–New Brunswick. “That’s regardless of whether emissions mitigation strategies such as removing carbon dioxide from the atmosphere are employed.”

The Paris Agreement, achieved at a United Nations climate change conference, seeks to limit the negative impacts of global warming. Its goal is to keep the increase in global average temperature well below 2 degrees Celsius above pre-industrial levels, along with pursuing efforts to limit the increase to 1.5 degrees Celsius (2.7 degrees Fahrenheit). The signatories committed to eliminating global net carbon dioxide emissions in the second half of the 21st century.

Climate change from human activities is causing sea levels to rise, and projecting how Antarctica will contribute to this rise in a warmer climate is a difficult but critical challenge. How ice sheets might respond to warming is not well understood, and we don’t know what the ultimate global policy response to climate change will be. Greenland is losing ice at a faster rate than Antarctica, but Antarctica contains nearly eight times more ice above the ocean level, equivalent to 190 feet of global average sea-level rise, the study notes.

The study explored how Antarctica might change over the next century and beyond, depending on whether the temperature targets in the Paris Agreement are met or exceeded. To better understand how the ice sheet might respond, scientists trained a state-of-the-art ice-sheet model with modern satellite observations, paleoclimate data and a machine learning technique. They used the model to explore the likelihood of rapid ice-sheet retreat and the western Antarctic ice-sheet’s collapse under different global greenhouse gas emissions policies.

Current international policies are likely to lead to about 3 degrees Celsius of warming, which could thin Antarctica’s protective ice shelves and trigger rapid ice-sheet retreat between 2050 and 2100. Under this scenario, geoengineering strategies such as removing carbon dioxide from the atmosphere and sequestering (or storing) it would fail to prevent the worst of Antarctica’s contributions to global sea-level rise.

“These results demonstrate the possibility that unstoppable, catastrophic sea-level rise from Antarctica will be triggered if Paris Agreement temperature targets are exceeded,” the study says.

Gilford said “it’s critical to be proactive in mitigating climate change now through active international participation in reducing greenhouse gas emissions and by continuing to ratchet down proposed policies to meet the ambitious Paris Agreement targets.”

Rutgers coauthors include Erica Ashe, a postdoctoral scientist in the Rutgers Earth System Science & Policy Lab. Scientists at the University of Massachusetts Amherst (US), Pennsylvania State University (US), University of California Irvine (US), University of Bristol (UK), McGill University (CA), Woods Hole Oceanographic Institution (US) and University of Wisconsin-Madison (US) contributed to the study.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition


Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.


Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

As a ’67 graduate of University College, second in my class, I am proud to be a member of

Alpha Sigma Lamda, National Honor Society of non-tradional students.