From DOE’s Fermi National Accelerator Laboratory (US) and Sanford Underground Research Facility-SURF: “Rock transportation system is ready for excavation of DUNE caverns”

FNAL Art Image
FNAL Art Image by Angela Gonzales

From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

Sanford Underground Research Facility-SURF

May 5, 2021
Brianna Barbu

The Fermilab-hosted international Deep Underground Neutrino Experiment will shoot the world’s most powerful beam of neutrinos from the Department of Energy’s Fermilab in Illinois to detectors 800 miles (1,300 kilometers) away at the Sanford Underground Research Facility in South Dakota. Data collected from this ambitious experiment will help scientists answer such lofty questions as how black holes form and why the universe itself exists.

But in order to make this groundbreaking project happen, a lot of literal ground will have to be broken.

Now, Fermilab contractors working on the construction of the Long-Baseline Neutrino Facility in South Dakota have successfully tested a system that will move almost 800,000 tons of rock over the course of three years to make room for DUNE’s massive underground detectors. The system will use a combination of refurbished mining hoists and a new conveyor belt system to bring rock up from the LBNF excavation area nearly a mile underground and send it to a former open mining pit three-quarters of a mile away in Lead, South Dakota.

“LBNF is a long project, and that’s why we’re excited to start the excavation work for the detector caverns. We want to start building the detectors as soon as possible,” said Chris Mossey, Fermilab deputy director for LBNF/DUNE-US.

The conveyor belt taking the rocks from the crusher to the Open Cut passes close to the town of Lead, South Dakota. Image: Fermilab.

LBNF encompasses all of the infrastructure that will support the DUNE collaboration, including caverns for four liquid-argon detector modules, each as tall as a four-story building and as long as a football field.

The detector modules will be installed 4,850 feet (1,480 meters) underground — the depth made possible by Sanford Lab’s former life as a gold mine — to shield the experiment from cosmic rays.

Excavated rock from the LBNF construction will go through underground chutes into skips — essentially giant buckets — that will be hoisted up Sanford Lab’s Ross Shaft to a rock crusher in the Ross Headframe, on the surface. After being crushed, the rock will be dumped into a giant bin. The bin will feed the rock onto the first of two underground conveyor belts that will take it out of the mountain, down the mountainside and to the huge Open Cut. The entire system is designed to move about 3,000 tons of rock per day.

The hoists, first built in 1934, were recently upgraded with new digital controls to get them ready for LBNF construction. The conveyor belts start off following the same path as an old mine tramway through the mountain but take a different path down the side of the mountain to bring the rock to a new destination.

“The new thing is that we’re taking rock to the Open Cut. When the Open Cut was being mined in the 1980s, the miners were doing the opposite, bringing rock from the Open Cut over to the mill system,” said Josh Willhite, the Fermilab Long-Baseline Neutrino Facility far-site conventional facilities design manager.

This graphic shows the route that the rock will follow from the LBNF/DUNE excavation to the Open Cut pit. Image: Fermilab.

Two different conveyor belts will transport the rock 4,200 feet (1,280 meters) from the crusher to the Open Cut. The first, covering about 60% of the total distance, runs entirely underground. The second is mostly aboveground, at one point passing over a state highway. Parts of the second belt curve to accommodate the mountain terrain while minimizing the number of times the rock is transferred to a new belt so that fewer noise and dust controls are needed.

The fact that the conveyor system, built by contractor Kiewit Alberici Joint Venture, is in a populated town was taken into account in the conveyor design: It has controls for dust and noise, and the conveyor operates only during weekdays (though the hoists will bring rock up the shaft more or less constantly during the excavation).

As enormous as 800,000 tons sounds — it’s twice the weight of the Empire State Building — the rocks from the LBNF excavation will fill less than 1% of the Open Cut, which is 1,200 feet deep.

The first step in commissioning the rock transportation system was a dry run to make sure all of its parts work and to break in the conveyor belts. Now, the system has successfully been tested with 1,600 tons of rock dug up during pre-excavation projects. It’s the culmination of eight years of work for Willhite and the far-site conventional facilities team.

“We’re thrilled to say, ‘Hey, this step is complete, and it’s a big deal!’ And more importantly, it allows us to do the main construction,” Willhite said.

Thyssen Mining, the company contracted to excavate the main LBNF caverns, started moving their equipment underground in April. Their first scheduled blast for the main excavation will be in late June. It will take about three years to excavate the caverns before construction can begin on cryogenics for the neutrino detectors.

Mossey said the investment that the Department of Energy is putting into constructing a huge facility 800 miles away from Fermilab speaks to the fact that the impact of LBNF/DUNE will go far beyond the lab hosting it.

“This world-class facility will enable the world’s neutrino science community to research some of the fundamental unanswered questions in physics,” he said. “It’s a privilege to be a part of the team effort that is going to have that type of reach and impact.”

The Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab is supported by the DOE Office of Science.

Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit

See the full article here.


Please help promote STEM in your local schools.

Stem Education Coalition

About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

The U Washington Large Underground Xenon at SURF, Lead, SD, USA dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

“LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

FNAL DUNE LBNF (US) from FNAL to SURF ,Lead, South Dakota, USA.

FNAL DUNE LBNF (US) Caverns at Sanford Lab.

U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard..

Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

DOE’s Fermi National Accelerator Laboratory Wilson Hall (US).

Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.

In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
Asteroid 11998 Fermilab is named in honor of the laboratory.

Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
The later directors include:

John Peoples, 1989 to 1996
Michael S. Witherell, July 1999 to June 2005
Piermaria Oddone, July 2005 to July 2013
Nigel Lockyer, September 2013 to the present

Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

DOE’s Fermi National Accelerator Laboratory(US) campus .

DOE’s Fermi National Accelerator Laboratory(US)/MINERvA. Photo: Reidar Hahn.

DOE’s Fermi National Accelerator Laboratory(US) DAMIC | Fermilab Cosmic Physics Center

DOE’s Fermi National Accelerator Laboratory(US) Muon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles..

DOE’s Fermi National Accelerator Laboratory(US) Short-Baseline Near Detector under construction.

DOE’s Fermi National Accelerator Laboratory(US) Mu2e solenoid

Dark Energy Camera [DECam] built at DOE’s Fermi National Accelerator Laboratory(US)

Fermi National Accelerator Laboratory DUNE/LBNF experiment (US) Argon tank at Sanford Underground Research Facility(US)

DOE’s Fermi National Accelerator Laboratory(US) MicrobooNE

FNAL Don Lincoln.

DOE’s Fermi National Accelerator Laboratory(US) MINOS

DOE’s Fermi National Accelerator Laboratory(US) Cryomodule Testing Facility

DOE’s Fermi National Accelerator Laboratory(US) MINOS Far Detector

FNAL DUNE LBNF (US) from FNAL to SURF Lead, South Dakota, USA .

European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] (CH) ProtoDune.

DOE’s Fermi National Accelerator Laboratory(US) NOvA experiment map.

DOE’s Fermi National Accelerator Laboratory(US) NOvA Near Detector at Batavia IL, USA

DOE’s Fermi National Accelerator Laboratory(US)ICARUS.

DOE’s Fermi National Accelerator Laboratory(US) Holometer.

DOE’s Fermi National Accelerator Laboratory(US) LArIAT.

DOE’s Fermi National Accelerator Laboratory(US) ICEBERG particle detector.