From National Science Foundation (US) : “7 cool NSF-funded robots that are advancing science and helping society”

From National Science Foundation (US)


Whether microscopic or human-sized, inspired by tree-dwelling mammals or pasta, the family of U.S. National Science Foundation-funded robots captures the incredible innovation possible with cross-disciplinary collaboration across STEM fields. The critical research NSF supports enables advances in the physical aspects of robotic systems and how they “think” and understand the world around them. Scientists and engineers are training robots to support the workforce; training the workforce that will use them; and studying how the world understands and interacts with these autonomous systems. The following are seven projects featuring amazing new robots and highlighting the exciting ways in which robots could benefit individuals, industry and society.

Researchers developing the Smarticle robots also created comics in multiple languages to help engage students. Credit: Lindsey Leigh.

1. Swarming Nanobot SLOBS

Understanding how organisms move, eat, breathe and interact with their environments — and how those actions are affected by their genes, musculature and brains — is critical to advancing the understanding of adaptation and evolution. This can lead to advances in robotics, prosthetics and vehicles. NSF-supported researchers are examining how California blackworms move and form collective aggregations called blobs, that protect individual worms and enable actions that would be impossible for single worms alone. The scientists created a swarm of nanobots called “Smarticle” (smart active particle) blobs or “SLOBS”, to model and better understand this behavior. Eventually the SLOBS might help develop robots that can work with little communication to accomplish tasks in the real world. The researchers also created comics in multiple languages to help engage kids in the science.

Researchers aboard the R/V Thomas G. Thompson preparing to deploy a Global Ocean Biogeochemistry (GO-BGC) float. Credit: Andreas Thurnerr.

2. Global Robotic Network

Robotic profiling floats equipped with sensors are helping scientists measure and sense changes in the ocean, including in places humans can’t easily reach, like the deep sea. Global Ocean Biogeochemistry Array floats — the first 12 of which will be launched over the next month — will carry chemical and biological sensors to take measurements from a depth of 2,000 meters to the surface and will report every 10 days for the next several years via satellite communications systems. The measurements will transform the ability to observe and predict, at the global scale, the effects of climate change on the ocean and the many organisms that call it home. Each float was also adopted and named by a grade school class.

Tumbling Magnetic Microrobots In Vivo.

3. Micro Back-Flipping Robot

Robots also can go inside — inside humans, that is! NSF funding helped develop the mechanics and computing necessary to create microbots that can travel within the human body and provide insight into the state of internal organs or help deliver drugs to hard-to-reach locations. Directly administering drugs to specific sites can help avoid harmful side effects, including hair loss or stomach bleeding. One such robot is the size of a few human hairs and can do back (and side) flips to help deliver medicines to the colon and other organs that have rough terrain. The flips are created by applying a rotating external magnetic field. The robot has been tested in experiments in animal models, and the researchers hope human use is on the horizon.

Nina Sinatra with ultra gentle soft robotic fingers and jellyfish. Photo Credit: Wyss Institute at Harvard University(US).

4. Soft Robotic Fingers

Robots can serve as crucial tools for conducting research on living specimens, especially undersea creatures sensitive to human contact. NSF-funded scientists developed a tool that resembles soft robotic linguine fingers for use in handling jellyfish. Specimens that were handled by the robotic grippers showed far less stress than those touched by human hands. These soft robots will also enable researchers to better study sensitive coral formations and other organisms to understand how they evolve and adapt without damaging them. On land, the robotic fingers could be used to harvest fruit without bruising it or rehabilitate the muscles of stroke patients — things rigid robots can’t do.

EMAR (center) with Elin Björling (front row, 3rd from right) and the team that developed the robot. Photo Credit: Dennis Wise/UW.

5. WALL-E Meets Big Hero 6

It’s not easy being a teenager. According to the Pew Research Center, anxiety and depression are rising among U.S. teens, with potentially large-scale negative consequences for their education, development and overall health. As any parent or teacher knows, getting teenagers to talk about their mental state can be a challenge. Enter EMAR, the Ecological Momentary Assessment Robot, designed by NSF-funded scientists to explore the idea of using robots to accurately measure stress levels in teenagers. An intentionally lo-fi mashup of the movie characters Wall-E and “Big Hero 6’s” Baymax, EMAR is exploring whether schools can incorporate robots aimed to help understand and address health issues common in students in the U.S. The research team also led a design challenge where teens from local high schools designed their own social robots.

Georgia Tech deploys SlothBot in Atlanta Botanical Garden.

6. SlothBot

While many robots are envisioned as a means to perform tasks more quickly and efficiently than humans, some robots perform better by moving slowly. SlothBot, a slow-moving and energy-efficient robot, lingers among the trees to monitor animals, plants and the environment. Created by engineers under the Robotarium project at Georgia Tech in Atlanta, SlothBot mimics the low-energy lifestyle of its namesake, sloths. Powered by solar panels and using innovative power management technology, the robot was tested at the Atlanta Botanical Garden, where it monitored temperature, carbon dioxide levels and other information. SlothBot, which moves on a cable strung between two trees, is programmed to only move for essential reasons, such as locating the sun used to power it. By conserving its energy, the robot can perform tasks for longer periods of time. The researchers envision SlothBots having roles in climate monitoring and species protection as well as precision agriculture.

Solo12 Reactive Stepping in New York / NYU.

Robots that mimic the movement capabilities of four-legged animals can go where wheeled robots cannot, making them ideal for use in many applications. However, existing quadruped robot research platforms are expensive to build and maintain, putting them out of reach for many startups, small labs and educational institutions. With support from NSF, teams of engineers in the U.S. and Germany have created a relatively low-cost, easy-to-assemble platform called Solo 8 as an accessible research testbed. The robot’s torque-controlled motors and actuated joints provide the functionality of more expensive legged robots, allowing it to take multiple configurations, move with a variety of gaits, jump, make sharp changes in direction, and right itself if overturned. Additionally, all of Solo 8’s construction files are freely available online, enabling scientists to customize the configuration for their own innovative purposes and develop their own technology.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition
The National Science Foundation (NSF) (US) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
Award graduate fellowships in the sciences and in engineering.
Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

At the same time, we are looking for the next frontier.

NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.