From ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU) via phys.org: “Using 100-million-year-old fossils and gravitational-wave science to predict Earth’s future climate”

arc-centers-of-excellence-bloc

From ARC Centres of Excellence for Gravitational Wave Discovery

(AU)

via


phys.org

January 19, 2021

A group of international scientists, including an Australian astrophysicist, has used findings from gravitational wave astronomy (used to find black holes in space) to study ancient marine fossils as a predictor of climate change.

The research, published in the journal Climate of the Past, is a unique collaboration between palaeontologists, astrophysicists and mathematicians seeking to improve the accuracy of a palaeo-thermometer, which can use fossil evidence of climate change to predict what is likely to happen to the Earth in coming decades.

Professor Ilya Mandel, from the ARC Centre of Excellence in Gravitational Wave Discovery (OzGrav), and colleagues, studied biomarkers left behind by tiny single-cell organisms called archaea in the distant past, including the Cretaceous period and the Eocene.

Marine archaea in our modern oceans produce compounds called Glycerol Dialkyl Glycerol Tetraethers (GDGTs). The ratios of different types of GDGTs they produce depend on the local sea temperature at the site of formation.

When preserved in ancient marine sediments, the measured abundances of GDGTs have the potential to provide a geological record of long-term planetary surface temperatures.

To date, scientists have combined GDGT concentrations into a single parameter called TEX86, which can be used to make rough estimates of the surface temperature. However, this estimate is not very accurate when the values of TEX86 from recent sediments are compared to modern sea surface temperatures.

1
Image of archaea. Credit: Steve Gschmeissner/Science Photo Library

“After several decades of study, the best available models are only able to measure temperature from GDGT concentrations with an accuracy of around 6 degrees Celsius,” Professor Mandel said. Therefore, this approach cannot be relied on for high-precision measurements of ancient climates.

Professor Mandel and his colleagues at the University of Birmingham in the UK have applied modern machine-learning tools—originally used in the context of gravitational-wave astrophysics to create predictive models of merging black holes and neutron stars—to improve temperature estimation based on GDGT measurements. This enabled them to take all observations into account for the first time rather than relying on one particular combination, TEX86. This produced a far more accurate palaeo-thermometer. Using these tools, the team extracted temperature from GDGT concentrations with an accuracy of just 3.6 degrees—a significant improvement, nearly twice the accuracy of previous models.

According to Professor Mandel, determining how much the Earth will warm in coming decades relies on modelling, “so it is critically important to calibrate those models by utilizing literally hundreds of millions of years of climate history to predict what might happen to the Earth in the future,” he said.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

OzGrav (AU)


ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU)
A new window of discovery.
A new age of gravitational wave astronomy.
One hundred years ago, Albert Einstein produced one of the greatest intellectual achievements in physics, the theory of general relativity. In general relativity, spacetime is dynamic. It can be warped into a black hole. Accelerating masses create ripples in spacetime known as gravitational waves (GWs) that carry energy away from the source. Recent advances in detector sensitivity led to the first direct detection of gravitational waves in 2015. This was a landmark achievement in human discovery and heralded the birth of the new field of gravitational wave astronomy. This was followed in 2017 by the first observations of the collision of two neutron-stars. The accompanying explosion was subsequently seen in follow-up observations by telescopes across the globe, and ushered in a new era of multi-messenger astronomy.

The mission of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) is to capitalise on the historic first detections of gravitational waves to understand the extreme physics of black holes and warped spacetime, and to inspire the next generation of Australian scientists and engineers through this new window on the Universe.

OzGrav is funded by the Australian Government through the Australian Research Council Centres of Excellence funding scheme, and is a partnership between Swinburne University (host of OzGrav headquarters), the Australian National University, Monash University, University of Adelaide, University of Melbourne, and University of Western Australia, along with other collaborating organisations in Australia and overseas.

________________________________________________________

The objectives for the ARC Centres of Excellence are to to:

undertake highly innovative and potentially transformational research that aims to achieve international standing in the fields of research envisaged and leads to a significant advancement of capabilities and knowledge

link existing Australian research strengths and build critical mass with new capacity for interdisciplinary, collaborative approaches to address the most challenging and significant research problems

develope relationships and build new networks with major national and international centres and research programs to help strengthen research, achieve global competitiveness and gain recognition for Australian research

build Australia’s human capacity in a range of research areas by attracting and retaining, from within Australia and abroad, researchers of high international standing as well as the most promising research students

provide high-quality postgraduate and postdoctoral training environments for the next generation of researchers

offer Australian researchers opportunities to work on large-scale problems over long periods of time

establish Centres that have an impact on the wider community through interaction with higher education institutes, governments, industry and the private and non-profit sector.