From University of Chicago: “UChicago scientists pioneer new method of measuring electricity in cells”

U Chicago bloc

From University of Chicago

Dec 23, 2020
Sheila Evans

The complex dance of electrical signals inside a cell holds the key to many questions about diseases and disorders, but has been difficult to understand—so a team of UChicago scientists invented a way to listen in. Credit: Christoph Burgstedt/Shutterstock.

New technology peers inside cells, may inspire new fields of research.

Electricity is a key ingredient in living bodies. We know that voltage differences are important in biological systems; they drive the beating of the heart and allow neurons to communicate with one another. But for decades, it wasn’t possible to measure voltage differences between organelles—the membrane-wrapped structures inside the cell—and the rest of the cell.

A pioneering technology created by UChicago scientists, however, allows researchers to peer into cells to see how many different organelles use voltages to carry out functions.

“Scientists had noticed for a long time that charged dyes used for staining cells would get stuck in the mitochondria,” explained graduate student Anand Saminathan, the first author for the paper, which was published in Nature Nanotechnology. “But little work has been done to investigate the membrane potential of other organelles in live cells.”

The Krishnan lab at UChicago specializes in building tiny sensors to travel inside cells and report back on what’s happening, so that researchers can understand how cells work—and how they break down in disease or disorders. Previously, they have built such machines to study neurons and lysosomes, among others.

In this case, they decided to use the technique to investigate the electric activities of the organelles inside live cells.

In the membranes of neurons, there are proteins called ion channels which act as gateways for charged ions to enter and exit the cell. These channels are essential for neurons to communicate. Previous research had shown that organelles have similar ion channels, but we weren’t sure what roles they played.

The researchers’ new tool, called Voltair, makes it possible to explore this question further. It works as a voltmeter measuring the voltage difference of two different areas inside a cell. Voltair is constructed out of DNA, which means it can go directly into the cell and access deeper structures.

In their initial studies, the researchers looked for membrane potentials—a difference in voltage inside an organelle versus outside. They found evidence for such potentials in several organelles, such as trans-Golgi networks and recycling endosomes, that were previously thought not to have membrane potentials at all.

“So I think the membrane potential in organelles could play a larger role—maybe it helps organelles communicate,” said Prof. Yamuna Krishnan, an expert in nucleic acid-based molecular devices.

Their studies are only the beginning, the authors said; Voltair offers a way for researchers in many fields to answer questions they’ve never even been able to ask. It can even be used in plants.

“This new development will at least start conversations, and may even inspire a new field of research,” said Saminathan.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

U Chicago Campus

An intellectual destination

One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.