From University of Arizona and NASA via EarthSky: “Is Mars still volcanically active?”

From University of Arizona


NASA image




November 23, 2020
Paul Scott Anderson

A new study of geologically young lava flows in Elysium Planitia suggests that Mars might still have residual volcanic activity below its surface. The finding could also correlate with seismic activity detected by the InSight lander in the same region and may have implications for possible Martian life.

Oblique view of Cerberus Fossae, a tectonic fracture in the Elysium Planitia region of Mars. A new study of young lava flows surrounding it suggests that this area might still be volcanically active today, underground. Image via ESA/ DLR/ FU Berlin.

Mars has some of the largest volcanoes in the solar system, but they’ve apparently been inactive for millions of years. No plumes of ash or flowing streams of lava are seen on Mars today. But just how long ago were the last great Martian eruptions? That has been a matter of some debate among planetary geologists, and now scientists at the University of Arizona (UA) have announced new evidence for recent – geologically speaking – explosive volcanism in the Elysium Planitia region of Mars.

InSight’s Landing Site: Elysium Planitia. Elysium Planitia, a flat-smooth plain just north of the equator makes for the perfect location from which to study the deep Martian interior.

Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is designed to study the deep interior of Mars. The mission seeks the fingerprints of the processes that formed the rocky planets of the solar system.

Its landing site, Elysium Planitia, was picked from 22 candidates, and is centered at about 4.5 degrees north latitude and 135.9 degrees east longitude; about 373 miles (600 kilometers) from Curiosity’s landing site, Gale Crater. The locations of other Mars landers and rovers are labeled.

InSight’s scientific success and safe landing depends on landing in a relatively flat area, with an elevation low enough to have sufficient atmosphere above the site for a safe landing. It also depends on landing in an area where rocks are few in number. Elysium Planitia has just the right surface for the instruments to be able to probe the deep interior, and its proximity to the equator ensures that the solar-powered lander is exposed to plenty of sunlight.

JPL, a division of Caltech in Pasadena, California, manages the InSight Project for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space, Denver, built the spacecraft. InSight is part of NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

For more information about the mission, go to:

Image Credit: NASA/JPL-Caltech

According to the new findings, eruptions there may have occurred as recently as 53,000 years ago, which is a blink of an eye relative to Mars’ total age of about 4.6 billion years (same as Earth’s). According to these scientists, this finding could mean Mars is still volcanically active even today, at least underground.

Prior to this new work, the most recent eruptions known on Mars happened about 2.5 to 500 million years ago.

The intriguing findings were submitted to arXiv on November 11, 2020, for publication in the peer-reviewed journal Icarus.

Overhead view of Cerberus Fossae, with the mantling unit of younger lava flows surrounding it. Credit: Horvath et al./ Cornell University.

The evidence comes from the study of a volcanic lava deposit distributed symmetrically around a segment of the Cerberus Fossae fissure system in Elysium Planitia, called the “mantling unit.”

The researchers say it is probably the youngest such deposit yet found on Mars. It is similar to pyroclastic flows – fluidized masses of rock – on the moon and Mercury, but sits on top of older lava flows and has a thickness of tens of centimeters.

By counting the number of impact craters visible in the area, the researchers, led by David Horvath at UA, say these eruptions are estimated to have happened only 53,000 to 210,000 years ago. That’s like yesterday in geological terms.

Elysium Planitia is also where NASA’s InSight lander touched down on November 26, 2018. Since then, the probe has recorded hundreds of marsquakes in the planet’s subsurface with its Seismic Experiment for Interior Structure (SEIS) instrument, proving that Mars is still seismically active. As of last February, it was reported that over 450 seismic signals had been detected, up to the equivalent of magnitude 4 on the earthly Richter Scale.

Some of those quakes were detected near or at Cerberus Fossae, the location of the young lava deposits. Could there be a connection? Mars doesn’t have tectonic plates like Earth does, so those quakes are more similar to those in the middle of continents on Earth rather than at plate boundaries. Whether there is any relation to current volcanic activity isn’t known, but based on the new findings of young lava flows, it certainly seems possible. From the paper:

“Given the young age of the deposit, it is possible that the deeper magma source that fed the deposit could still be active today and could generate seismicity observable by the Seismic Experiment for Interior Structure (SEIS) instrument on the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) lander (Lognonné et al., 2019). Seismicity related to magma transport and chamber pressurization has been linked to active volcanism on Earth (e.g., Battaglia et al., 2005; Grandin et al., 2012; Carrier et al., 2015). Magma-induced seismicity along rift zones can result in small to moderate earthquake magnitudes (Mw < 6). Dike-induced faulting and seismicity (Rubin & Gillard, 1998; Taylor et al., 2013) associated with this young magmatic activity is also possible."

There is also a possibility that current volcanic activity, if proven, could help explain the presence of methane in Mars’ atmosphere. Various telescopes, orbiters and the Curiosity rover have all detected the gas in small quantities, which on Earth is produced mostly by microbes as well as some from geologic activity. Scientists still don’t know the source of the Martian methane, but even if it is only from geological activity, that could still have implications for biology, since it would require liquid water-related chemical reactions (serpentinization) below ground.

The landing site of NASA’s InSight lander in Elysium Planitia and its proximity to the tectonic fissure system Cerberus Fossae. The probe has detected hundreds of marsquakes, including near Cerberus Fossae, which may be related to subsurface volcanic activity. Credit: J.T. Keane/ Nature Geoscience/ NASA.

Landslides within Cerberus Fossae, caused by marsquakes. Credit: NASA/ JPL-Caltech/ University of Arizona.

From the paper:

“Geologically recent near-surface magmatic activity in Elysium Planitia, combined with evidence for recent groundwater-sourced floods (Burr et al., 2002; Head et al., 2003), which may have been triggered by dike intrusions (Hanna & Phillips, 2006), raises important implications regarding the subsurface habitability on Mars. Dike-induced melting of ground ice and hydrothermal circulation could generate favorable conditions for recent or even extant habitable environments in the subsurface. These environments would be analogous to locations on Earth where volcanic activity occurs in glacial environments such as Iceland, where chemotrophic and psychrophilic (i.e., cryophilic) bacteria thrive (Cousins & Crawford, 2011). Subsurface microbial communities found in basaltic lavas on Earth (McKinley et al., 2000) are also aided by hydrothermal circulation of groundwater through porous basalt (Storrie-Lombardi et al., 2009; Cousins & Crawford, 2011). Recent or ongoing magmatic activity on Mars could also provide a source of transient methane releases to the atmosphere (Formisano et al., 2004; Fonti & Marzo, 2010) through direct volcanic outgassing or, more likely, serpentinization reactions (Atreya et al., 2007).”

The possibility that Mars is still volcanically active is exciting, since it would overturn long-held assumptions that the planet has been geologically dead for the most part for billions of years. It could also create habitable environments below the surface for Martian microorganisms, which would be even more exciting. Mars may not be as dead or dormant as we thought it was, perhaps in more ways than one.

See the full article here .

Please help promote STEM in your local schools.

Stem Education Coalition

The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra,Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.