From Chinese Academy of Sciences: “Strongest Magnetic Field in Universe Directly Detected by Insight-HXMT”

From Chinese Academy of Sciences

Sep 09, 2020
LIU Jia

GUO Lijun
Institute of High Energy Physics
ljguo@ihep.ac.cn

The Insight-HXMT team has performed extensive observations of the accreting X-ray pulsar GRO J1008-57 and has discovered a magnetic field of ~1 billion Tesla on the surface of the neutron star.

2
Credit: Pixabay/CC0 Public Domain

China HXMT Insight Hard X-ray Modulation Telescope.

This is so far the strongest magnetic field conclusively detected in the universe. This work, published in The Astrophysical Journal Letters, was primarily conducted by scientists from the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences and Eberhard Karls University of Tübingen, Germany.

Scientists studied the X-ray pulsar GRO J1008-57 detected by Insight-HXMT during its outburst in August 2017. They discovered for the first time a cyclotron resonant scattering feature (CRSF) at 90 keV at a significance level of > 20σ. (Note that the scientific community confirms a new scientific discovery when its significance level is larger than 5σ.) According to theoretical calculations, the magnetic field that corresponds to this CRSF is up to one billion Tesla, which is tens of millions of times stronger than what can be generated in Earth laboratories.

Insight-HXMT is the first Chinese X-ray astronomical satellite. It comprises scientific payloads including a high-energy telescope, a medium-energy telescope, a low-energy telescope, and a space environment monitor. Compared with other X-ray satellites, Insight-HXMT has outstanding advantages in the detection of cyclotron lines (especially at high energies) due to its broadband (1-250keV) spectral coverage, large effective area at high energies, high time resolution, low dead time and negligible pile-up effects for bright sources.

Neutron stars have the strongest magnetic fields in the universe. Neutron star X-ray binaries are systems consisting of a neutron star and a normal stellar companion. The neutron star accretes matter and forms a surrounding accretion disk. If the magnetic field is strong, the accreted matter is channeled by magnetic lines onto the surface of the neutron star, resulting in X-ray radiations.

As a result, these sources are also called “pulsars.” Previous studies have shown that a peculiar absorption feature (known as a “cyclotron resonant scattering feature”) can sometimes be found in the spectrum of X-ray pulsars. Scientists believe this is caused by transitions between the discrete Landau levels of electronic motion perpendicular to the magnetic field. Such a scattering feature acts as a direct probe to the magnetic field near the neutron star’s surface.

Insight-HXMT was proposed by IHEP in 1993 and was successfully launched in June 2017. IHEP is responsible for scientific payloads, ground segments and scientific research involving this satellite.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Chinese Academy of Sciences is the linchpin of China’s drive to explore and harness high technology and the natural sciences for the benefit of China and the world. Comprising a comprehensive research and development network, a merit-based learned society and a system of higher education, CAS brings together scientists and engineers from China and around the world to address both theoretical and applied problems using world-class scientific and management approaches.

Since its founding, CAS has fulfilled multiple roles — as a national team and a locomotive driving national technological innovation, a pioneer in supporting nationwide S&T development, a think tank delivering S&T advice and a community for training young S&T talent.

Now, as it responds to a nationwide call to put innovation at the heart of China’s development, CAS has further defined its development strategy by emphasizing greater reliance on democratic management, openness and talent in the promotion of innovative research. With the adoption of its Innovation 2020 programme in 2011, the academy has committed to delivering breakthrough science and technology, higher caliber talent and superior scientific advice. As part of the programme, CAS has also requested that each of its institutes define its “strategic niche” — based on an overall analysis of the scientific progress and trends in their own fields both in China and abroad — in order to deploy resources more efficiently and innovate more collectively.

As it builds on its proud record, CAS aims for a bright future as one of the world’s top S&T research and development organizations.