From AAS NOVA: “The Contradiction of a Low-Mass Massive Black Hole”



22 July 2020
Susanna Kohler

Artist’s impression of a gas cloud swirling around a black hole. [NAOJ]

The black holes we’ve observed in the universe typically fall into two categories: small star-sized black holes, and gargantuan black holes lurking at the centers of galaxies. Now, a new black-hole discovery sheds some light on the gray area between these extremes.

Illustrations of two types of accreting black holes: a stellar-mass black hole accreting from a binary companion (top) and a supermassive black hole accreting gas in a galaxy’s center (bottom). [Top: ESA/NASA/Felix Mirabel; Bottom: ESO/M. Kornmesser]

Growing Together

Stellar-mass black holes of up to 100 solar masses are scattered by the millions throughout galaxies. At the opposite end of the spectrum, most galaxies are thought to contain just one massive black hole: a black hole of millions to tens of billions of solar masses that lies in the galaxy’s core.

Intriguingly, the mass of these central black holes seems to be inherently tied to that of their host. An empirical relationship known as the M-σ relation shows a correlation between a central black hole’s mass and the spread of star velocities in its host galaxy’s bulge, which acts as a proxy for the bulge mass. The M-σ relation and other, similar relationships show that black holes seem to grow in tandem with their host galaxies throughout the universe.

If the M-σ relation holds across a broad range of masses, then we would expect to find smaller massive black holes at the hearts of especially low-mass galaxies. So far, evidence for these low-mass central black holes has been scarce. But a new study led by Ingyin Zaw (New York University Abu Dhabi, UAE) has now delivered a low-mass massive black hole for us to contemplate.

A 4’ x 4’ view of IC 750, a low-mass galaxy that hosts a massive (though less so than expected!) black hole at its center. [Sloan Digital Sky Survey]

SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft)

Mass Measurement from Masers

Zaw and collaborators used the Very Long Baseline Array to obtain radio observations of the low-mass galaxy IC 750.

At the galaxy’s heart, the authors found emission from water masers, clumps of water molecules that emit light naturally in a process similar to laser emission. Light from the masers shows that they are orbiting in a disk around a compact central mass — a massive black hole — and Zaw and collaborators used their motion to measure the mass enclosed in their orbit, providing an upper limit on the black hole’s mass.

The authors then reduced and analyzed publicly available multiwavelength data to understand the location of the black hole and measure the properties of its host galaxy.

This plot of black hole mass vs. bulge stellar velocity dispersion (the M-σ relation) shows IC 750 marked with a red star, with upper mass limits indicated by downward-pointing arrows. It falls two orders of magnitude below where we’d expect it to lie on the relation. [Zaw et al. 2020]

A Decidedly Low-Mass Monster

The result? IC 750’s central massive black hole is a definite lightweight, with an upper limit of 140,000 solar masses — and it may actually be less than a third of that weight. Not only is this remarkably small for a central massive black hole, it’s also unusually light even relative to the mass of its host galaxy: IC 750’s black hole lies two orders of magnitude below where it should sit on the M-σ relation!

What’s going on with this unusual object? There are two possible explanations: either there’s more scatter at the low-mass end of the M-σ relation, or the scaling relationship is simply different for low-mass galaxies. The latter option is supported by some simulations that suggest that black holes don’t grow efficiently in low-mass galaxies.

Though we don’t yet know which explanation is more likely, more observations like those presented here will eventually fill in our picture of these low-mass massive monsters.


“An Accreting, Anomalously Low-mass Black Hole at the Center of Low-mass Galaxy IC 750,” Ingyin Zaw et al 2020 ApJ 897 111.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition


AAS Mission and Vision Statement

The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009