From AAS NOVA: “Searching Pulsars for Planets”

AASNOVA

From AAS NOVA

27 April 2020
Susanna Kohler

1
Artist’s illustration of a multi-planet system orbiting a millisecond pulsar. [NASA/JPL-Caltech/R. Hurt (SSC)]

Are there more hidden exoplanets lurking around extreme pulsar hosts? A recent study explores a well-observed set of pulsars in the hunt for planetary companions.

2
An artist’s illustration showing a network of pulsars whose precisely timed flashes of light are observed from Earth. Could some of these pulsars host planets? [David Champion/NASA/JPL]

Ushering in the Age of Exoplanets

The first planets ever confirmed beyond our solar system were discovered in 1992 around the pulsar PSR B1257+12. By studying the pulses from this spinning, magnetized neutron star, scientists confirmed the presence of two small orbiting companions. Two years later, a third planet was found in the same system — and it seemed that pulsars showed great promise as hosts for exoplanets.

But then the discoveries slowed. Other detection methods, such as radial velocity and transits, dominated the emerging exoplanet scene. Of the more than 4,000 confirmed exoplanets we’ve discovered overall, a grand total of only six have been found orbiting pulsars.

Is this dearth because pulsar planets are extremely rare? Or have we just not performed enough systematic searches for pulsar planets? A new study led by Erica Behrens (The Ohio State University) addresses this question by using a unique dataset to explore rapidly spinning millisecond pulsars, looking for signs of hidden planets.

The Advantage of Precise Clocks

How are pulsar planets found? Pulsars have beams of hot radiation that flash across our line of sight each time they spin. The regularity of these flashes is remarkably stable, and when we observe them over long periods of time, we can predict the arrival time of the pulses with a precision of microseconds!

4
Sample periodograms for two pulsars. The top panel includes a simulated planet signal injected into the data, producing a strong peak at the planet’s orbital period. The bottom panel is an actual periodogram for one of the pulsars in this study, showing no evidence of a planetary companion. [Adapted from Behrens et al. 2020]

Because these pulses are so predictable, any perturbation that might change their timing can be measured and modeled. In particular, the presence of a companion body around the pulsar will cause both objects to orbit the system’s center of mass, introducing a periodic signature in the pulsar’s pulse arrival times. This fluctuation in the pulse timing allows us to measure the period and mass of potential companions.

A Multi-Use Dataset

To search for these signatures in pulse data, Behrens and collaborators turn to observations of 45 separate millisecond pulsars, which were made as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project.

NANOGrav’s primary goal is to use the precise timing of these pulsars to measure the warping of spacetime caused by gravitational waves. But in the process of this work, the project has been carefully monitoring pulse arrival times for these pulsars for 11 years, producing a remarkably detailed dataset in which we can search for evidence of planets orbiting any of the 45 pulsars.

5
Lower limits of detectable masses in the 11-year NANOGrav data set, as shown with black lines. The colored data shows the masses of the least massive 10% of confirmed exoplanets we’ve detected with other methods. Pulsar timing provides the ability to detect remarkably low-mass companion bodies.[Behrens et al. 2020]

Pushing Down to Moon Masses

Looking for periodic signals in the data, Behrens and collaborators rule out the presence of planets that have periods between 7 and 2,000 days. By injecting simulated signals into the data, the authors show that their analysis is sensitive to companions with masses of less than the Earth — in fact, for some pulsars, they’ve eliminated the possibility of all companions with more than a fraction of the mass of our Moon!

This study shows the incredible power and sensitivity of extended pulsar monitoring in the hunt for small exoplanets. While it may well be true that pulsar planets are very rare objects, those out there can’t stay hidden for long.

Citation

“The NANOGrav 11 yr Data Set: Constraints on Planetary Masses Around 45 Millisecond Pulsars,” E. A. Behrens et al 2020 ApJL 893 L8.

https://iopscience.iop.org/article/10.3847/2041-8213/ab8121

__________________________________________________________
Women in STEM – Dame Susan Jocelyn Bell Burnell

Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

Dame Susan Jocelyn Bell Burnell 2009

Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

Biography

British astrophysicist, scholar and trailblazer Jocelyn Bell Burnell discovered the space-based phenomena known as pulsars, going on to establish herself as an esteemed leader in her field.Who Is Jocelyn Bell Burnell?
Jocelyn Bell Burnell is a British astrophysicist and astronomer. As a research assistant, she helped build a large radio telescope and discovered pulsars, providing the first direct evidence for the existence of rapidly spinning neutron stars. In addition to her affiliation with Open University, she has served as dean of science at the University of Bath and president of the Royal Astronomical Society. Bell Burnell has also earned countless awards and honors during her distinguished academic career.

Early Life

Jocelyn Bell Burnell was born Susan Jocelyn Bell on July 15, 1943, in Belfast, Northern Ireland. Her parents were educated Quakers who encouraged their daughter’s early interest in science with books and trips to a nearby observatory. Despite her appetite for learning, however, Bell Burnell had difficulty in grade school and failed an exam intended to measure her readiness for higher education.

Undeterred, her parents sent her to England to study at a Quaker boarding school, where she quickly distinguished herself in her science classes. Having proven her aptitude for higher learning, Bell Burnell attended the University of Glasgow, where she earned a bachelor’s degree in physics in 1965.

Little Green Men

In 1965, Bell Burnell began her graduate studies in radio astronomy at Cambridge University. One of several research assistants and students working under astronomers Anthony Hewish, her thesis advisor, and Martin Ryle, over the next two years she helped construct a massive radio telescope designed to monitor quasars. By 1967, it was operational and Bell Burnell was tasked with analyzing the data it produced. After spending endless hours pouring over the charts, she noticed some anomalies that did not fit with the patterns produced by quasars and called them to Hewish’s attention.

Over the ensuing months, the team systematically eliminated all possible sources of the radio pulses—which they affectionately labeled Little Green Men, in reference to their potentially artificial origins—until they were able to deduce that they were made by neutron stars, fast-spinning collapsed stars too small to form black holes.

Pulsars and Nobel Prize Controversy

Their findings were published in the February 1968 issue of Nature and caused an immediate sensation. Intrigued as much by the novelty of a woman scientist as by the astronomical significance of the team’s discovery, which was labeled pulsars—for pulsating radio stars—the press picked up the story and showered Bell Burnell with attention. That same year, she earned her Ph.D. in radio astronomy from Cambridge University.

However, in 1974, only Hewish and Ryle received the Nobel Prize for Physics for their work. Many in the scientific community raised their objections, believing that Bell Burnell had been unfairly snubbed. However, Bell Burnell humbly rejected the notion, feeling that the prize had been properly awarded given her status as a graduate student, though she has also acknowledged that gender discrimination may have been a contributing factor.

Life on the Electromagnetic Spectrum

Nobel Prize or not, Bell Burnell’s depth of knowledge regarding radio astronomy and the electromagnetic spectrum has earned her a lifetime of respect in the scientific community and an esteemed career in academia. After receiving her doctorate from Cambridge, she taught and studied gamma ray astronomy at the University of Southampton. Bell Burnell then spent eight years as a professor at University College London, where she focused on x-ray astronomy.

During this same time, she began her affiliation with Open University, where she would later work as a professor of physics while studying neurons and binary stars, and also conducted research in infrared astronomy at the Royal Observatory, Edinburgh. She was the Dean of Science at the University of Bath from 2001 to 2004, and has been a visiting professor at such esteemed institutions as Princeton University and Oxford University.

Array of Honors and Achievements

In recognition of her achievements, Bell Burnell has received countless awards and honors, including Commander and Dame of the Order of the British Empire in 1999 and 2007, respectively; an Oppenheimer prize in 1978; and the 1989 Herschel Medal from the Royal Astronomical Society, for which she would serve as president from 2002 to 2004. She was president of the Institute of Physics from 2008 to 2010, and has served as president of the Royal Society of Edinburgh since 2014. Bell Burnell also has honorary degrees from an array of universities too numerous to mention.

Personal Life

In 1968, Jocelyn married Martin Burnell, from whom she took her surname, with the two eventually divorcing in 1993. The two have a son, Gavin, who has also become a physicist.

A documentary on Bell Burnell’s life, Northern Star, aired on the BBC in 2007.

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

1

AAS Mission and Vision Statement

The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009