From International Centre for Radio Astronomy Research: “Astronomers detect biggest explosion in the history of the Universe”

ICRAR Logo
From International Centre for Radio Astronomy Research

February 28, 2020
Professor Melanie Johnson-Hollitt — ICRAR / Curtin University
Ph: +61 400 951 815
E: Melanie.Johnston-Hollitt@curtin.edu.au

Pete Wheeler — Media Contact, ICRAR
Ph: +61 423 982 018
E: Pete.Wheeler@icrar.org

April Kleer — Media Contact, Curtin University
Ph: +61 9266 3353
E: April.Kleer@curtin.edu.au

Scientists studying a distant galaxy cluster have discovered the biggest explosion seen in the Universe since the Big Bang.

2
This extremely powerful eruption occurred in the Ophiuchus galaxy cluster, which is located about 390 million light-years from Earth. Galaxy clusters are the largest structures in the Universe held together by gravity, containing thousands of individual galaxies, dark matter, and hot gas. Credits: X-ray: NASA/CXC/Naval Research Lab/Giacintucci, S.; XMM:ESA/XMM; Radio: NCRA/TIFR/GMRTN; Infrared: 2MASS/UMass/IPAC-Caltech/NASA/NSF

NASA/Chandra X-ray Telescope

ESA/XMM Newton

Giant Metrewave Radio Telescope, located near Pune (Narayangaon) in India, operated by the National Centre for Radio Astrophysics, a part of the Tata Institute of Fundamental Research, Mumbai


Caltech 2MASS Telescopes, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC) at Caltech, at the Whipple Observatory on Mt. Hopkins south of Tucson, AZ, USA Altitude 2,606 m (8,550 ft) and at the Cerro Tololo Inter-American Observatory at an altitude of 2200 meters near La Serena, Chile.

The blast came from a supermassive black hole at the centre of a galaxy hundreds of millions of light-years away.

It released five times more energy than the previous record holder.

Professor Melanie Johnston-Hollitt, from the Curtin University node of the International Centre for Radio Astronomy Research, said the event was extraordinarily energetic.

“We’ve seen outbursts in the centres of galaxies before but this one is really, really massive,” she said.

“And we don’t know why it’s so big.

“But it happened very slowly—like an explosion in slow motion that took place over hundreds of millions of years.”

The explosion occurred in the Ophiuchus galaxy cluster, about 390 million light-years from Earth.

It was so powerful it punched a cavity in the cluster plasma—the super-hot gas surrounding the black hole.

Lead author of the study Dr Simona Giacintucci, from the Naval Research Laboratory in the United States, said the blast was similar to the 1980 eruption of Mount St. Helens, which ripped the top off the mountain.

“The difference is that you could fit 15 Milky Way galaxies in a row into the crater this eruption punched into the cluster’s hot gas,” she said.

Professor Johnston-Hollitt said the cavity in the cluster plasma had been seen previously with X-ray telescopes.

But scientists initially dismissed the idea that it could have been caused by an energetic outburst, because it would have been too big.

“People were sceptical because the size of outburst,” she said. “But it really is that. The Universe is a weird place.”

The researchers only realised what they had discovered when they looked at the Ophiuchus galaxy cluster with radio telescopes.

“The radio data fit inside the X-rays like a hand in a glove,” said co-author Dr Maxim Markevitch, from NASA’s Goddard Space Flight Center.

“This is the clincher that tells us an eruption of unprecedented size occurred here.”

The discovery was made using four telescopes; NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton, the Murchison Widefield Array (MWA) in Western Australia and the Giant Metrewave Radio Telescope (GMRT) in India.

5
The Murchison Widefield Array (MWA) is a low frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed, at the Boolardy station in outback Western Australia. at the Murchison Radio-astronomy Observatory (MRO)

6
Tile 107, or “the Outlier” as it is known, is one of 256 tiles of this SKA precursor instruments located 1.5km from the core of the telescope. Lighting the tile and the ancient landscape is the Moon. Photographed by Pete Wheeler, ICRAR.

Professor Johnston-Hollitt, who is the director of the MWA and an expert in galaxy clusters, likened the finding to discovering the first dinosaur bones.

“It’s a bit like archaeology,” she said.

“We’ve been given the tools to dig deeper with low frequency radio telescopes so we should be able to find more outbursts like this now.”

The finding underscores the importance of studying the Universe at different wavelengths, Professor Johnston-Hollitt said.

“Going back and doing a multi-wavelength study has really made the difference here,” she said.

Professor Johnston-Hollitt said the finding is likely to be the first of many.

“We made this discovery with Phase 1 of the MWA, when the telescope had 2048 antennas pointed towards the sky,” she said.

“We’re soon going to be gathering observations with 4096 antennas, which should be ten times more sensitive.”

“I think that’s pretty exciting.”

The Murchison Widefield Array

The Murchison Widefield Array (MWA) is a low-frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed.


SKA Square Kilometer Array


SKA South Africa

A consortium of partner institutions from seven countries (Australia, USA, India, New Zealand, Canada, Japan, and China) financed the development, construction, commissioning, and operations of the facility. The MWA consortium is led by Curtin University.

Publication:

‘‘Discovery of a giant radio fossil in the Ophiuchus Galaxy Cluster’, published in The Astrophysical Journal on February 28th, 2020.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition
ICRAR is an equal joint venture between Curtin University and The University of Western Australia with funding support from the State Government of Western Australia. The Centre’s headquarters are located at UWA, with research nodes at both UWA and the Curtin Institute for Radio Astronomy (CIRA).
ICRAR has strong support from the government of Australia and is working closely with industry and the astronomy community, including CSIRO and the Australian Telescope National Facility, <a
ICRAR is:

Playing a key role in the international Square Kilometre Array (SKA) project, the world's biggest ground-based telescope array.

Attracting some of the world’s leading researchers in radio astronomy, who will also contribute to national and international scientific and technical programs for SKA and ASKAP.
Creating a collaborative environment for scientists and engineers to engage and work with industry to produce studies, prototypes and systems linked to the overall scientific success of the SKA, MWA and ASKAP.

Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

A Small part of the Murchison Widefield Array

Enhancing Australia’s position in the international SKA program by contributing to the development process for the SKA in scientific, technological and operational areas.
Promoting scientific, technical, commercial and educational opportunities through public outreach, educational material, training students and collaborative developments with national and international educational organisations.
Establishing and maintaining a pool of emerging and top-level scientists and technologists in the disciplines related to radio astronomy through appointments and training.
Making world-class contributions to SKA science, with emphasis on the signature science themes associated with surveys for neutral hydrogen and variable (transient) radio sources.
Making world-class contributions to SKA capability with respect to developments in the areas of Data Intensive Science and support for the Murchison Radio-astronomy Observatory.